K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì các p/s bé hơn 1 nên tổng nó bé hơn 1

thế thui

5 tháng 11 2023

CM: A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\)+...+ \(\dfrac{1}{50^2}\) < 1

      \(\dfrac{1}{2^2}\)  < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

      \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

      .............................

      \(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)

       Cộng vế với vế ta có:

       A  < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)

       A < 1 - \(\dfrac{1}{50}\)

       A < 1 (đpcm)

 

19 tháng 9 2017

6/6 vì 6/6 lớn hơn 5/6 và bế hơn 50

30 tháng 7 2020

Chứng minh rằng 50<P<100

4 tháng 12 2019

Nhanh lên nhé

4 tháng 12 2019

Giups mnihf đi

23 tháng 7 2015

1/5^2 < 1/4.5 =1/4 -1/5 
1/6^2 < 1/5.6 = 1/5-1/6 
1/7^2 < 1/6.7 = 1/6-1/7 
... 
1/100^2 < 1/99.100 = 1/99 - 1/100 

Vậy 1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/5+1/5-1/6+...+ 1/98-1/99 +1/99 -1/100 
1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/100 
1/5^2+1/6^2+1/7^2+...+1/100^2 < 24/100 < 50/100 = 1/2 
Hay 1/5^2+1/6^2+1/7^2+...+1/100^2<1/2

31 tháng 10 2015

câu trả lời ở dưới trả khớp với đề bài gj cả

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha