K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)

12 tháng 5 2017

\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Gọi biểu thức trên là A, ta có:

3A = 1-2/3+3/3^2-...-100/3^99

3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]

4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]

Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99

3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012

3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]

4B = 3 - 1/3^99 

=> 4B < 3 => B < 1/4 [2]

Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]

MỎI TAY QUỚ

tk nha

12 tháng 5 2017

Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:

\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

7 tháng 3 2016

Ta có:

M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)

M=\(\frac{1.3....99}{2.4....100}\)

Lại có:

N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)

N=\(\frac{2.4....100}{3.5....101}\)

\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)

\(\Rightarrow\)M.N=\(\frac{1}{101}\)

30 tháng 1 2016

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)

....

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)

do đó \(A<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)

=>A<1

30 tháng 1 2016

sẽ là 1/4+1/9+1/16........tổng sẽ ko lớn hơn 1

1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199< 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)

1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199 > 1/200

12 tháng 4 2022

?

12 tháng 4 2022

sao v ạ? em mới sửa r đó ạ

15 tháng 3 2020

DAP AN LA 99/100

6 tháng 6 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

19 tháng 6 2021

Mình đồng ý với bạn dấu hỏi

2 tháng 5 2023

`A=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(99xx100)`

`=> A=(2-1)/(1xx2)+(3-2)/(2xx3)+...+(100-99)/(99xx100)`

`=> A=1-1/2+1/2-1/3+...+1/99-1/100`

`=> A=1-1/100`

`=> A=99/100

2 tháng 5 2023

Sửa đề:

A = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(97.98) + 1/(98.99) + 1/(99.100)

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100

= 1 - 1/100

= 99/100