Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)
\(f\left(x\right)=ax^3+bx^2+cx+d\)
a,b,c,d lập thành cấp số nhân công bội q \(\Rightarrow\left\{{}\begin{matrix}q\ne\left\{0,1\right\}\\a\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=a.q\\c=aq^2\\d=aq^3\end{matrix}\right.\)
\(f\left(x\right)=a.x^3+a.q.x^2+a.q^2.x+a.q^3\)(1)
\(f\left(x\right)=a\left[.x^3+q.x^2+q^2.x+q^3\right]\)
\(f\left(x\right)=a.\left[.x^2\left(x+q\right)+q^2\left(.x+q\right)\right]\)
\(f\left(x\right)=a.\left(x+q\right)\left(x^2+q^2\right)\)
\(\left\{{}\begin{matrix}a,q\ne0\\f\left(x\right)=0\end{matrix}\right.\)\(\Rightarrow x=-q\) là nghiệm duy nhất
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm