K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

b,

a là số lẻ (2k + 1)

a là số chẵn (2k)

Với a là số lẻ ,ta có :

(a - 2)(a + 3) - (a - 3)(a + 2)

= (2k + 1 - 2)(2k + 1 + 3) - (2k + 1 - 3)(2k + 1 + 2)

= (2k - 1)(2k + 4) - (2k + 4)(2k + 3)

= (2k + 4)[(2k - 1) - (2k + 3)]

Vì 2k + 4 = 2.(k + 2) chia hết cho 2

=> (2k + 4)[(2k - 1) - (2k + 3)] chia hết cho 2

=> (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2

Với a là số chẵn ,ta có :

(a - 2)(a + 3) - (a - 3)(a + 2)

= (2k - 2)(2k + 3) - (2k - 3)(2k + 2)

= 2.(k - 1)(2k + 3) - 2.(k + 1)(2k - 3)

= 2.[ (k - 1)(2k + 3) - (k + 1)(2k - 3)] Chia hết cho 2

Vậy với mọi a thì (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2 

nguồn: Câu hỏi của Nguyễn Khánh Dương - Toán lớp 6 - Học toán với OnlineMath

1 tháng 2 2017

a,M=a(a+2)-a(a-5) 

a2+2a+-a2+5a

(a2+-a2)+(5a+2a) 

0+7a=7a chia hết cho 7.

Vậy M luôn luôn chia hết cho 7.

b,N=(a-2)(a+3)-(a-3)(a+2)

a(-2+3)-a(-3+2)

a.1-a.-1

a-(-a).

Mà N có dạng a-(-a) đều là số chắn nén N là số chắn.

Vậy N luôn luôn là số chắn.

25 tháng 12 2015

a ) a - 5 là bội của a + 2

=> a - 5 chia hết cho a + 2

=> ( a + 2 ) - 7 chia hết cho a + 2

Mà : a + 2 chia hết cho a + 2

=> 7 chia hết cho a + 2

=> a + 2 E Ư(7) ={ - 7 ; - 1 ; 1 ; 7 }

=> a E { - 9 ; - 3 ; - 1 ; 5 }

22 tháng 1 2018

M=a.(a+2)-a.(a-5)-7

M=a.[(a+2)-(a-5)]-7

M=a.7-7

ma M>7 hoac M=0

nên M là bội của 7

22 tháng 1 2018

nếu a lẻ thì goi a la 2n+1

N=(2n+1-2).(2n+1+3)-(2n+1-3).(2n+1+20)

N=(2n-1).(2n+4)-(2n-2).(2n+21)

N=lẻ nhân chẵn trừ chẵn nhân lẻ

N= chẵn - chẵn = chẵn nên nếu a là số lẻ thì N chẵn

nếu a chẵn thì gọi a là 2n

N=(2n-2).(2n+3)-(2n-3).(2n+20)

N=chẵn nhân lẻ trừ lẻ nhân chẵn

N=chẵn trừ chẵn = chẵn

vậy N là số chẵn với mọi a

a. Ta có: M= a.(a+2)-a.(a-5)-7

                =a.(a+2-a+5)-7

                = 7.a-7=7.(a -1) chia hết cho 7.

Vậy M là bội của 7(đpcm)

17 tháng 2 2016

 vậy còn bài thứ 2 thì như thế nào ? giải luôn đi bạn

25 tháng 1 2017

a) M = a(a + 2) - a(a - 5) - 7

M = a2 + 2a - (a2 - 5a) - 7

M = a2 + 2a - a2 + 5a - 7

M = 7a - 7

M = 7.(a - 1) chia hết  cho 7

25 tháng 1 2017

b) Ta chia a thành 2 trường hợp

a là số lẻ (2k + 1)

a là số chẵn (2k) 

Với a là số lẻ ,ta có :

(a - 2)(a + 3) - (a - 3)(a + 2) 

= (2k + 1 - 2)(2k + 1 + 3) - (2k + 1 - 3)(2k + 1 + 2)

= (2k - 1)(2k + 4) - (2k + 4)(2k + 3)

= (2k + 4)[(2k - 1) - (2k + 3)]

Vì 2k + 4 = 2.(k + 2) chia hết cho 2

=> (2k + 4)[(2k - 1) - (2k + 3)] chia hết cho 2

=> (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2

Với a là số chẵn ,ta có :

(a - 2)(a + 3) - (a - 3)(a + 2) 

= (2k - 2)(2k + 3) - (2k - 3)(2k + 2)

= 2.(k - 1)(2k + 3) - 2.(k + 1)(2k - 3)

= 2.[ (k - 1)(2k + 3) - (k + 1)(2k - 3)]

Chia hết cho 2

Vậy với mọi a thì (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2