Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu n chẵn => n+2020 chẵn => (n+2019)(n+2020) chẵn
+ Nếu n lẻ => n+2019 chẵn => (n+2019)(n+2020) chẵn
=> (n+2019)(n+2020) chẵn với mọi n
+) Nếu n là số tự nhiên lẻ thì n + 4 là số lẻ và n + 7 chẵn .
=> ( n + 4 ) . ( n + 7 ) = lẻ x chẵn là số chẵn .
+) Nếu n là số chẵn thì n + 4 là số chẵn và n + 7 là số lẻ .
=> ( n + 4 ) . ( n + 7 ) = chẵn x lẻ là số chẵn .
Vậy bài toán được chứng minh .
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
Giả sử nếu n là một số lẻ ta có:
n + 2010 là một số lẻ
n + 2013 là một số chẵn
Mà tích của một số lẻ và một số chẵn là số chẵn
=> Với n là một số lẻ thì thỏa mãn yêu cầu đề bài
Giả sử nếu n là một số chãn ta có:
n + 2010 là một số chẵn
n + 2013 là một số lẻ
Mà tích của.... ( viết như trên)
=> Với n là một số chẵn cũng thỏa mãn yêu cầu đề bài
Vậy (n+2010)(n+2013) là một số chẵn với mọi số tự nhiên n
<=> ĐPCM
_HT_
CMR:N=20122012-20112011 là số tự nhiên
+)Theo bài ta thấy 20122012>20112011(1)
+)Mà 20122012 và 20112011 đều là số tự nhiên(2)
+)Từ (1) và (2)
=>20122012-20112011 là số tự nhiên
Vậy 20122012-20112011 là số tự nhiên
Nếu n là chẵn thì n+1 là lẻ.
Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.
Nếu n là lẻ thì n+1 là chẵn
Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn
Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
xet n=2k =>n chia het cho 2
xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2
vay n.(n+1) la so chan voi moi so tu nhien n
vì (n+2011)(n+2012) là tích 2 số tự nhiên liên tiếp => (n+2011)(n+2012)chia hết cho 2
=> (n+2011)(n+2012) là số chẵn
Vì (n+2011)(n+2012) là 2 số tự nhiên liên tiếp suy ra có ít nhất 1 số chẵn
=>(n+2011)(n+2012) chia hết cho 2
=>(n+2011)(n+2012) là số chẵn