K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

\(N=\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\)

\(\Leftrightarrow N=a\left(a-2\right)+3\left(a-2\right)-a\left(a-3\right)+2\left(a-3\right)\)

\(\Leftrightarrow N=a-2a^2+3a-6-a^2+3a+2a-6\)

\(\Leftrightarrow N=\left(a+3a+3a+2a\right)-\left(2a^2-a^2\right)-\left(6+6\right)\)

\(\Leftrightarrow N=9a-a^2-12\)

\(\Leftrightarrow N=a\left(9-a\right)-12\)

Vì \(\left[a\left(9-a\right)\right]⋮2\) và \(12⋮2\) nên \(N⋮2\)

Hay N là số chẵn (đpcm)

5 tháng 2 2017

a) Ta có : \(M=a\left(a+2\right)-a\left(a-5\right)-7\)

\(=a\left[\left(a+2\right)-\left(a-5\right)\right]-7\)

\(=a\left(a+2-a+5\right)-7\)

\(=7a-7\)

Vì 7a ⋮ 7 và -7 ⋮ 7 \(\Rightarrow\) 7a - 7 ⋮ 7 \(\Rightarrow\) M ⋮ 7

b)

+) Nếu a là số chẵn

\(\Rightarrow\) a - 2 và a + 2 là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\)\(\left(a-3\right)\left(a+2\right)\) là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (1)

+) Nếu a là số lẻ

\(\Rightarrow\) a - 3 và a + 3 là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\)\(\left(a-3\right)\left(a+2\right)\) là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (2)

Từ (1)(2) \(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) luôn chẵn

25 tháng 1 2017

a) đặt a ra ngoài rút gọn cái trong

b)pt r` xét

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
24 tháng 5 2018

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

25 tháng 1 2017

(3a + 2)(2a - 1) + (3 - a)(6a + 2) - 17(a - 1)

= 6a3 - 3a + 4a - 2 + 18a + 6 - 6a2 - 2a - 17a + 17

= 21

Vậy giá trị biểu thức sau không phụ thuộc vào a (đpcm)

2 tháng 2 2017

Cô giải rõ hơn được không ạ ngaingung

11 tháng 2 2020

Bạn giải biểu thức trên rồi kết quả kh còn a. 

Rồi KL : Biểu thức trên kh phụ thuộc vào a.

11 tháng 2 2020

Đầu bài sai

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

27 tháng 12 2015

a) Ta có:

   \(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)

            Vậy \(\frac{1.3.5...39}{21.22.23...40}\)\(\frac{1}{2^{20}}\) 

27 tháng 12 2015

tick cho minh