K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Ta có:

\(-2x^2+4x-10=-2\left(x^2-2x+1\right)-8=-\left(x-1\right)^2-8\le-8< 0\forall x\)

Vậy bất phương trình \(-2x^2+4x-10< 0\) có nghiệm là mọi số thực

4 tháng 6 2020

\(2x^2-4x+5=2x^2-4x+2+3=2\left(x-1\right)^2+3>0\)

ta có điều phải chứng minh

14 tháng 8 2020

a) 2x2 - 4x + 5

= 2( x2 - 2x + 1 ) + 3

= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 3x2 + 2x + 1

= 3( x2 + 2/3x + 1/9 ) + 2/3

= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 10

= -x2 + 6x - 9 - 1

= -( x2 - 6x + 9 ) - 1

= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

d) -x2 + 3x - 3

= -x2 + 3x - 9/4 - 3/4

= -( x2 - 3x + 9/4 ) - 3/4

= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

e) \(\frac{x^2+4x+5}{2}>0\)

Vì 2 > 0

=> x2 + 4x + 5 > 0

=> x2 + 4x + 4  + 1 > 0

=> ( x + 2 )2 + 1 > 0 ( đúng )

=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )

f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)

Vì x2 + 1 ≥ 1 ∀ x

=> -6 + 2x - x2 < 0

=> -x2 + 2x - 1 - 5

= -( x2 - 2x + 1 ) - 5

= -( x - 1 )2 - 5 < 0 ( đúng )

=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )

14 tháng 8 2020

a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)

Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)

Hay :\(2x^2-4x+5>0\)

Vậy nên BPT luôn đúng với mọi số thực x 

b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)

Hay \(-x^2+6x-10\le-1\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)

\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)

Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)

Hay \(-x^2+3x-3\le0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

2 câu còn lại bạn nào làm giúp mình nha

25 tháng 3 2018

2x2 - 2x + 1 > 0

⇔ x2 - x + \(\dfrac{1}{2}\) > 0

⇔ (x - \(\dfrac{1}{2}\) )2 + \(\dfrac{1}{4}\) > 0 luôn đúng.

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

27 tháng 4 2020

tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

25 tháng 1 2020

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)