Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H O P E F M N U V V' K S T L J G I
Gọi EN giao FM tại K, AP cắt BC tại V, AK cắt BC tại U. Giao điểm của EF với AK và AP lần lượt là L và I.
Áp dụng ĐL Thales ta dễ có \(\frac{FL}{AM}=\frac{KF}{KM}=\frac{EF}{MN}=\frac{EI}{AM}\Rightarrow FL=EI\). Từ đây BU = CV
Suy ra hai điểm U,V đối xứng với nhau qua trung điểm T của cạnh BC (1)
Mặt khác gọi S là chân đường cao xuất phát từ A của tam giác ABC. KJ vuông góc AH tại J, AH cắt EF tại G.
Ta thấy ^KJH = ^KEH = ^KFH = 900 nên năm điểm E,F,K,H,J đồng viên
Từ đó \(GE.GF=GH.GJ\Rightarrow\frac{1}{4}SB.SC=\frac{1}{4}SH.SA=GH.GJ\)
Hay \(d_{\left(O,EF\right)}.AG=GH.d_{\left(K,EF\right)}\Rightarrow\frac{d_{\left(O,EF\right)}}{d_{\left(K,EF\right)}}=\frac{GH}{AG}\). Từ đó dễ suy ra L,O,H thẳng hàng
Gọi cát tuyến LOH cắt BC tại V'. Ta lại có CF và OH cắt nhau tại trọng tâm tam giác ABC nên theo ĐL Thales:
\(CV'=2.FL=BU\). Suy ra hai điểm U và V' đối xứng nhau qua trung điểm cạnh BC (2)
Từ (1) và (2) suy ra V trùng V'. Mà AP cắt BC tại V, OH (Đường Euler của tam giác ABC) cắt BC tại V'
Nên OH,AP,BC đồng quy (đpcm).
\(\frac{x+2}{x+1}=x+m\Leftrightarrow\begin{cases}x\ne-1\\x^2+mx+m-2=0\left(1\right)\end{cases}\)
Phương trình (1) có \(\Delta=m^2-4\left(m-2\right)=m^2-4m+8>0\), mọi m và \(\left(-1\right)^2-m+m-2\ne0\)
nên d luôn cắt (C) tại 2 điểm phân biệt \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)
Ta có \(OA=\sqrt{2x_1^2+2mx_1+m^2}=\sqrt{2\left(x_1^2+mx_1+m-2\right)+m^2-2m+4}=\sqrt{m^2-2m+4}\)
Tương tự \(OB=\sqrt{m^2-2m+4}\)
yêu cầu bài toán \(\Leftrightarrow\begin{cases}\frac{2}{\sqrt{m^2-2m+4}}=1\\O\notin AB\end{cases}\) \(\Leftrightarrow\begin{cases}m^2-2m+4=4\\m\ne0\end{cases}\)\(\Leftrightarrow m=2\)
Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}\left(-2;2;1\right)\) và đi qua \(M\left(3;6;1\right)\)
Đường thẳng AB có vectơ chỉ phương \(\overrightarrow{AB}\left(-4;-2;5\right)\) và đi qua \(\overrightarrow{AM}\left(-1;4;-1\right)\)
Ta có \(\left[\overrightarrow{u},\overrightarrow{AB}\right]=\left(12;6;12\right)\Rightarrow\left[\overrightarrow{u},\overrightarrow{AB}\right].\overrightarrow{AM}=-12+24-12=0\)
Vậy ta có AB và d đồng phẳng.
\(C\in d\Rightarrow C\left(3-2t;6+2t;1+t\right)\)
Tam giác ABC cân tại A \(\Leftrightarrow AB=AC\)
\(\Leftrightarrow\left(1+2t\right)^2+\left(4+2t\right)^2+\left(1-t\right)^2=45\)
\(\Leftrightarrow9t^2-18t-27=0\)
\(\Leftrightarrow t=1\) hoặc \(t=-3\)
Vậy \(C\left(1;8;2\right)\) hoặc \(C\left(9;0;-2\right)\)
Phương trình hoành độ giao điểm của (C) và đường thẳng (d) y = 2x + m là:
⇔ (2x + m)(x + 1) = x + 3
Vậy với mọi m ∈ R, (d) cắt (C) tại hai điểm phân biệt MN.
đây phải ko
sao hoả