Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lũy thừa có cơ số là 10 thì luôn có tận cùng là 0
=>Tổng các chữ số của lũy thừa có cơ số là 10 là 1
a)Tận cùng của 105 là 0 + với 35 sẽ cho 1 số có tận cùng là 5
Mà số có tận cùng là 5 thì chia hết cho 5
Xét tổng các chữ số của 105+35=1+3+5=9
Mà các số có tổng các chữ số bằng 9 thì chia hết cho 9
b)Tận cùng của 105+98 sẽ cho 1 số chẵn nên chia hết cho 2
Chia hết cho 9 làm tương tự như trên
c)Xét:Để chia hết cho 2,5 thì chữ số tận cùng phải bằng 0
Mà 105 có tận cùng bằng 0 và 1880 tận cùng bằng 0 =>105+1880 chia hết cho 2,5
Xét :Để chia hết cho 3,9 thì tổng các chữ số phải chia hết cho 3,9
Tổng các chữ số của:105+1880=1+1+8+8=18
18 chia hết cho 3,9
Vậy,...........
105=100000
100000+35=100035\(⋮\)5
1+3+5\(⋮\)9=>100035\(⋮\)9
k nha!
Ta có:
105 + 35 = 55.25 + 5.7 => \(⋮\)5
Ta có: Tổng chữ số của 105 = 1 (1)
Tổng chữ số của 35 = 3+5=8 (2)
(1);(2) => 1+8 = 9 \(⋮\) 9=> 105 +35\(⋮\)9
1/ \(10^5+35=10035⋮5\) (do có tận cùng là 5) \(⋮9\) (do có tổng các cso chia hết cho 9)
2/ \(10^5+98=10098⋮2\) (do có tận cùng là cs chẵn) \(⋮9\)(do có tổng các cso chia hết cho 9)
3/ \(10^5+1880=11880⋮2\)(do có tổng các cso chia hết cho 2) \(⋮3\) (do có tổng các cso chia hết cho 3) \(⋮5\)(có tận cùng là 0)
a) \(10^5+35=100000+35=100035\)
Vì 100035 có chữ số tận cùng là 5 nên nó chia hết cho 5
Vì 100035 có tổng tất cả các chữ số bằng 9 nên nó chia hết cho 9
b) \(10^5+98=100000+98=100098\)
Để 100098 chia hết cho 18 thì 100098 phải chia hết cho 2 và 9 mà 100098 có chữ số tận cùng là số chẵn (8) và tổng của tất cả các chữ số bằng 18 nên 100098 chia hết cho 2 và 9. Vậy 100098 chia hết cho 18.
a) Ta có : \(10^5+35=100000+35=100035\)
+) Vì 100035 tận cùng là 5 => 100035 chia hết cho 5
=> \(10^5+35\) chia hết cho 5
+) Ta có : \(100035=1+0+0+0+3+5=9\)
Để \(10^5+35\) chia hết cho 9 <=> \(10^{35}+35\) có tổng các chữ số của nó chia hết cho 9
Mà 9 chia hết cho 9 => 100035 chia hết cho 9
=> \(10^5+35\) chia hết cho 9
Vậy \(10^5+35\) vừ chia hết cho 5 vừa chia hết cho 9 ( đpcm )
b) Ta có : \(10^5+98=100000+98=100098\)
Vì \(18=2.9\) => Để \(10^5+98\) chia hết cho 18 <=> \(10^5+98\) chia hết cho cả 2 và 9
+) Vì 100098 tận cùng là số chẵn ( 8 )
=> 100098 chia hết cho 2 => \(10^5+98\) chia hết cho 2
+) Ta có : \(100098=1+0+0+0+9+8=18\)
Mà 18 chia hết cho 9
=> 100098 chia hết cho 9
=> \(10^5+98\) chia hết cho 9
Vì \(10^5+98\) vừa chia hết cho 9 vừa chia hết cho 2
=> \(10^5+98\) chia hết cho 18 ( đpcm )
a) \(10.100+35⋮5,9\)
10.100+35
= 1000+35
= 1035
=> \(1035⋮5,9\)
Vậy \(1035⋮5,9\)
b) \(10.100+98⋮2,9\)
= 10.100+98
= 1000+98
= 1098
=> \(1098⋮2,9\)
Vậy \(1098⋮2,9\)