K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

a) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )

= 64x3 - 48x2 + 12x - 1 - ( 64x3 + 12x - 48x2 - 9 ) ( chỗ này bạn chịu khó nháp nhé )

= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9

= -1 + 9 = 8 

Vậy biểu thức không phụ thuộc vào x ( đpcm )

b) ( x + 1 )3 - ( x - 1 )3 - 6( x + 1 )( x - 1 )

= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6x2 + 6

= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 6

= 1 + 1 + 6 = 8

Vậy biểu thức không phụ thuộc vào x ( đpcm )

c) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}\)

\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào x ( đpcm )

19 tháng 7 2020

a, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(=8\)

Vậy biểu thức thức không phụ thuộc vào biến x 

b, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

Vậy biểu thức không phụ thuộc vào biến x 

c, \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+25\right)}{x^2+25}=2\)

Vậy biểu thức không phụ thuộc vào biến x 

21 tháng 6 2016

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)

\(=9\)

Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x

21 tháng 6 2016

b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)

\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)

 

 

21 tháng 6 2018

\(a,=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)

       \(=\left(64x^3-64x^3\right)+\left(48x^2-48x^2\right)+\left(12x-12x\right)+\left(9-1\right)\)

        \(=8\)  => ko phụ thuộc vào biến x

\(b,=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

thay x+y=1 vào 

\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2x^2-2xy+2y^2-3x^2-3y^2\)

\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\)  =>ko phụ thuộc vào biến

\(c,=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)

      \(=6x^2+2-6x^2+6=8\)

\(d,\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)

8 tháng 10 2018

\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)=8x^3+27-8x^3+2=29\)

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)=8\)

      \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2-xy+y^2\right)-3x^2-3y^2\)

\(=-2xy-x^2-y^2\)

\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1^2=-1\)

        \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6=8\)

Chúc bạn học tốt.

19 tháng 6 2018

e)\(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

=\(\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

=\(\frac{2x^2+50}{x^2+25}\)

=\(\frac{2\left(x^2+25\right)}{x^2+25}\)

\(=2\)

Đúng như đáp án bạn nha

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

28 tháng 7 2016

\(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(x^3-3.x^2.2+3.x.2^2-2^3+6.x^2+2.x.1+1^2-x^3+12=0\)\(=x^3-6x^2+12x-8+6x^2+2x+1-x^3+12=0\)

\(14x+5=0\)

\(14x=0-5\)

\(14x=-5\)

\(x=-5:14\)

\(x=-\frac{5}{14}\)

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

14 tháng 8 2016

\(64x^3-48x^2+12x-1-64x^3+48x^2-12x+9=8\)

câu b sai đề bài

14 tháng 8 2016

a) \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9=8\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của biến x

b) Phần b sai đề phải là

\(\left(x-1\right)^3-x^3+3x^2-3x-1\)

\(=x^3-3x^2+3x-1-x^3+3x^2-3x-1=-2\)

Vậy ............................

 

19 tháng 8 2020

làm ơn giúp mình với

19 tháng 8 2020

A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) (  3x + 7 )

=> A = 6x2 + 23x - 55 - 6x- 23x - 21

=> A = - 55 - 21

=> A = - 76 ( không phụ thuộc vào biến x )

B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )

=> B = 8x3 + 27 - 8x3 + 2

=> B = 27 + 2

=> B = 29 ( không phụ thuộc vào biến x )

C = ( x - 1 )3 - (  x + 1 )3 + 6 ( x + 1 ) ( x - 1 )

=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

=> C = - 6x2 - 2 + 6x2 - 6

=> C = - 2 - 6

=> C = - 8 ( không phụ thuộc vào biến x )