K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)

Ta có:

\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)

Dấu = xảy ra khi x = y # 0

8 tháng 2 2017

\(\frac{x}{y}+\frac{y}{x}\ge2\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng!

26 tháng 5 2017

\(x^2+y^2-xy\ge x+y-1\)

\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)

\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\)

Bat ddang thuc cuoiđung,cac phep biendddooii tren la tuong dduong nen BĐT cuoi ddung =>đpcm

xay ra--ddang--thuc khi x=y=1

26 tháng 5 2017

sorry,mk viets saidông BĐT cuoi ddung=> BĐT ddau đungs

14 tháng 11 2016

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

14 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

nếu bạn dùng được bất đẳng thức cô-si cho hai số ko âm

\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{\frac{x}{y}\frac{y}{x}}\)

<=>\(\frac{x}{y}\)+\(\frac{y}{x}\)>=2\(\sqrt{1}\)=2

đây là cách lớp 9  nên ko bt bạn làm đc ko??????

18 tháng 12 2018

Không mất tính tổng quát,giả sử \(x\ge y\) (x và y không âm)

Đặt \(x=y+m\left(m\ge0\right)\).Ta có:

\(\frac{x}{y}+\frac{y}{x}=\frac{y+m}{y}+\frac{y}{y+m}=1+\frac{m}{y}+\frac{y}{y+m}\)

\(\ge1+\frac{m}{y+m}+\frac{y}{y+m}=1+\frac{m+y}{y+m}=1+1=2^{\left(đpcm\right)}\)

P/s: Đây là cách lớp 7,chắc áp dụng được nhỉ?

16 tháng 8 2021

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

3 tháng 4 2016

Tham khảo ở đây nha bạn!

http://olm.vn/hoi-dap/question/520851.html

18 tháng 5 2019

\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

\(\Leftrightarrow\)\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)

\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)

\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4++2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)

\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)

\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)

\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\)( luôn đúng )

=> \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Dấu " = " xảy ra <=> x=y