Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Đặt a3 + b3 - ab2 - a2b = 0
<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0
<=> ( a + b )( a2 + ab + b2 - ab ) = 0
<=> ( a + b )( a2 + b2 ) = 0 (1)
Mà a2 + b2 > 0
=> ( a + b )( a2 + b2 ) > 0 (2)
Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0
Vậy a3 + b3 - ab2 - a2b > 0 ( đpcm )
b) Đặt a5 + b5 - a4b - ab4 = 0
<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0
<=> a4( a - b ) + b4( b - a ) = 0
<=> a4( a - b ) - b4( a - b ) = 0
<=> ( a - b )( a4 - b4 ) = 0 (1)
Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0
=> ( a - b )( a4 - b4 ) < 0 (2)
Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0
Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )
a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)
vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)
b)\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)