K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

Bổ sung đề:

Cho: \(\frac{a}{b}=\frac{c}{d}\). C/m \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2.\left(bd\right)}{bd}=k^2\)                                                                   \(\left(1\right)\)

Và: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)         \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)\(\left(đpcm\right)\)

15 tháng 10 2019

tích cho t đi

8 tháng 3 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Điều cần CM là \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Rightarrow\frac{a^2+ac}{b^2+bd}=\frac{c^2-ac}{d^2-bd}\)

                                                       \(=\frac{a\left(a+c\right)}{b\left(b+d\right)}=\frac{c\left(c-a\right)}{d\left(d-b\right)}\)

Mà theo chứng minh trên ta có: \(\frac{a}{b}=\frac{c}{d};\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Từ đó ta\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

 

2 tháng 8 2016

ban oi theo mình thì phải giải từ trên xuống từ a/b=c/d chứ

11 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

vậy \(\frac{ab}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

11 tháng 7 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=>\frac{ac}{bd}=\frac{c^2}{d^2}\)

          \(\frac{c}{d}=\frac{a}{b}=>\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=>\frac{ac}{bd}=\frac{a^2}{b^2}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

13 tháng 10 2019

Ta có:

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(1\right)\)(do a/b=c/d)

\(\frac{c^2}{d^2}=\frac{c}{d}.\frac{c}{d}=\frac{c}{d}.\frac{a}{b}=\frac{ac}{bd}\left(2\right)\)(do a/b=c/d)

Từ(1),(2) \(\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}=\frac{c^2}{d^2}\)

29 tháng 7 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

29 tháng 7 2018

Thanks  bạn nhé

11 tháng 12 2019

a)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)

c)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).

\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)

\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)

Chúc bạn học tốt!