K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

Ta có:

51n=...1                            (1)

47102=47100.472

        =474.25x(...9)             

        =(...1)25x(...9)

        =(...1)x(...9)

        =...9                          (2)

 

Từ (1) và (2) 

=> A=...1 + ...9

=> A=...0

Nên A có chữ số tận cùng là 0

Hay A chia hết cho 10.

  Vậy A chia hết cho 10               (đpcm)

18 tháng 12 2015

 

+ 51n có chữ số tân cùng là 1 với mọi n thuộc N

+ 47102 = 472 .(474)25  =(...9).(...1) = (...9)

=> A =51n + 47102 = (...1) + (...9) = ( ....0) => A có chữ số tân cùng là 0 => A chia hết cho 10

16 tháng 2 2020

a) Ta có : 51n=\(\overline{...1}\)

                47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)

\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)

Vậy 51n+47102\(⋮\)10.

b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)

                \(24^4=\overline{...6}\)

                 \(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)

\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)

Vậy 175+244+1321\(⋮\)10

1 tháng 12 2017

47102 có chữ số tân cùng là 9

51n có tận cùng là 1

=> 51n + 47102 có chữ số tận cùng là 0

=>A chia hết cho 10

20 tháng 12 2016

Ta có:

\(A=3^{1999}-7^{1957}\)

\(A=3^{1996}.3^3-7^{1956}.7\)

\(A=\left(3^4\right)^{499}.27-\left(7^4\right)^{489}.7\)

\(A=\left(\overline{...1}\right)^{499}.27-\left(\overline{...1}\right)^{489}.7\)

\(A=\left(\overline{...1}\right).\left(\overline{...7}\right)-\left(\overline{...1}\right).7\)

\(A=\overline{...7}-\overline{...7}\)

\(A=\overline{...0}\)

\(\overline{...0}\text{⋮}5\)nên A⋮5 (đpcm)

Ta có:

\(B=51^n+47^{102}\)

\(B=\overline{...1}+47^{100}.47^2\)

\(B=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)

\(B=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)

\(B=\overline{...1}+\left(\overline{...1}\right)\left(\overline{...9}\right)\)

\(B=\overline{...1}+\overline{...9}\)

\(B=\overline{...0}\)

\(\overline{...0}\text{⋮}10\)nên B⋮10 (đpcm)

 

20 tháng 12 2016

cái phần trong ngoặc bạn giải rõ ra nhé ^^

21 tháng 10 2016

ta có 47102 thì ta so sánh chữ số cuối thì  thành 72 thì sẽ có tận cùng là 9 (72 =49)

mà 51n bao giờ cũng có tận cùng là 1

=>......1+........9= ......10 chia hết cho 10

24 tháng 10 2017

Ta có :

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

16 tháng 7 2016

Ta có:

51n + 47102

= (...1) + 47100 . 472

= (...1) + (474)25 . (...9)

= (...1) + (...1)25 . (...9)

= (...1) + (...1) . (...9)

= (...1) + (...9)

= (...0) chia hết cho 10

=> đocm

16 tháng 7 2016

\(^{51^n}\)luôn luôn có tận cùng bằng 1 (\(51^n\)=....1)
\(47^{102}\)=\(\left(47^4\right)^{25}\cdot47^2\)=......1 *....9=....9
=> \(51^n+47^{102}=.....1+.....9=.....0\)chia hết cho 10