Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k.6+5k.25 chia hết 31
<=> 62k+3 + 5k+3 = 36k.216+5k.125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k.216+5k.125−36k.6−5k.25
= 36k.210+5k.100 = 36k.207+5k.93−7(36k−5k)
Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31.
Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
Bài 1:
a)CMR: ab + ba chia hết cho 11
Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)
= 11a + 11b chia hết cho 11 b)CMR: abc - cba chia hết cho 99
Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)
= 99a - 99c chia hết cho 99
Bài 2
A= (321 + 322 + 323) + ... + (327 + 328 + 329) A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)
A=321 . 13 + ... + 327 . 13
A= 13 . (321 + ... + 327) chia hết cho 13
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
Gọi cái cần chứng minh là (*)
+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9
+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9
Thật vậy:
4k + 1 + 15(k + 1) - 1
= 4.4k + 15k + 15 - 1
= 4.4k + 15k + 18 - 4 - 45k
= 4.(4k + 15k - 1) - 45k - 18
Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9
=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9
hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9
=> Phương pháp quy nạp được chứng minh
Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*