Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c< a+b+c+d\\a+b+d< a+b+c+d\\b+c+d< a+b+c+d\\a+c+d< a+b+c+d\end{matrix}\right.\)
Ta có :
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\\ \dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\\ \dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\\ \dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\\ \Rightarrow P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=1\\ \Rightarrow P>1\left(1\right)\)
Vì \(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c>d\\a+b+d>c\\b+c+d>a\\a+c+d>b\end{matrix}\right.\)
Ta có :
\(\dfrac{a}{a+b+c}=\dfrac{2a}{\left(a+b+c\right)+\left(a+b+c\right)}< \dfrac{2a}{a+b+c+d}\)
\(\dfrac{b}{a+b+d}=\dfrac{2b}{\left(a+b+d\right)+\left(a+b+d\right)}< \dfrac{2b}{a+b+c+d}\left(a+b+d>c\right)\\ \dfrac{c}{b+c+d}=\dfrac{2c}{\left(b+c+d\right)+\left(b+c+d\right)}< \dfrac{2c}{a+b+c+d}\left(b+c+d>a\right)\\ \dfrac{d}{a+c+d}=\dfrac{2d}{\left(a+c+d\right)+\left(a+c+d\right)}< \dfrac{2d}{a+b+c+d}\left(a+c+d>b\right)\)
Từ đó, ta có :
\(\dfrac{a}{a+b+d}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}< \\ \dfrac{2a}{a+b+c+d}+\dfrac{2b}{a+b+c+d}+\dfrac{2c}{a+b+c+d}+\dfrac{2d}{a+b+c+d}=2\\ \Rightarrow P< 2\left(2\right)\)
Từ (1) và (2), ta có điều phải chứng minh.
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
Ta có :
\(\dfrac{a}{b}=\dfrac{a.\left(b+d\right)}{b.\left(b+d\right)}=\dfrac{ab+bd}{b^2+bd}\)
\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b^2+bd}\)
Ta so sánh :
\(\dfrac{ab+bd}{b^2+bd}\) và \(\dfrac{ab+bc}{b^2+bd}\)
Vì cùng mẫu nên ta chỉ so sánh :
\(ab+bd\) và \(ab+bc\)
\(\Rightarrow\) Ta tiếp tục so sánh :
\(bd\) và bc thì ta có : bd < bc (1)
Từ 1, suy ra :
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Mà \(\dfrac{a}{b}< \dfrac{c}{d}\)
Suy ra : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) (đpcm)
AD tích chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Rightarrow DPCM\)
Ta có:
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d};\dfrac{b}{a+b+d}< \dfrac{b+c}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}< \dfrac{c+a}{a+b+c+d};\dfrac{d}{a+c+d}< \dfrac{b+d}{a+b+c+d}\)
Cộng theo vế các BĐT trên ta có:
\(P< \dfrac{a+d}{a+b+c+d}+\dfrac{b+c}{a+b+c+d}+\dfrac{c+a}{a+b+c+d}+\dfrac{b+d}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(1\right)\)
Lại có:
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d};\dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d};\dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\)
Cộng theo vế các BĐT trên có:
\(P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\left(2\right)\)
Từ \((1);(2)\) ta thu được ĐPCM
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
Ta có:
Nếu:
\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)
\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)
\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)