K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

3 tháng 6 2017

Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)

\(=99...9-9n+27n\)( n c/s 9 )

\(=9\left(11...1-n\right)+27n\)( n c/s 1 )

Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)

Mà : \(27n⋮27\Rightarrow A⋮27\)

Vậy ...

3 tháng 6 2017

Ta có :

\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)

Ta có công thức :

\(a^m-b^m⋮a-b\) với mọi a;b thuộc R

\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)

26 tháng 11 2015

C= 10^n +18n ‐ 1=10^n‐1+18n

=99..9﴾n chữ số 9﴿+18n =9﴾11...1﴾n chữ số 9﴿+2n﴿

Xét 11...1﴾n chữ số 9﴿+2n=11...1‐ n+3n

Dễ thấy tổng các chữ số của 11..1﴾n chữ số 1﴿ là n

=>11...1‐ n chia hết cho 3

=>11...1‐ n+3n chia hết cho 3

=>10^n +18n ‐ 1 chia het cho 27

25 tháng 2 2018

10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n 
=9(11...1(n chữ số 9)+2n) 
Xét 11...1(n chữ số 9)+2n=11...1- n+3n 
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n 
=>11...1- n chia hết cho 3 
=>11...1- n+3n chia hết cho 3 
=>10^n +18n - 1 chia het cho 27

16 tháng 1 2018

Link nè https://olm.vn/hoi-dap/question/24003.html

14 tháng 1 2016

10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n 
=9(11...1(n chữ số 9)+2n) 
Xét 11...1(n chữ số 9)+2n=11...1- n+3n 
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n 
=>11...1- n chia hết cho 3 
=>11...1- n+3n chia hết cho 3 
=>10^n +18n - 1 chia hết cho 27

tick nha

8 tháng 2 2019

3

a+5b=a-b+6b 

vì: 

a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)

b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6

=> a-13b chia hết cho 6 (đpcm)

8 tháng 2 2019

1a) Tra mạng nhé cậu

b) gọi số cần tìm là: a (a E N)

Ta có:

a=11x+6=4y+1=19z+11 (x,y,z E N)

=> a+27=11x+33=4y+28=19z+38

=> a+27 chia hết cho 11;4;19

=> a+27 E {836;1672;........} (loại 0 vì: a+27>0)

=> a E {809;1655;........} mà a nhỏ nhất nên: a=809

Vậy: a=809

22 tháng 10 2016

Vì A chia hết cho 18 

=> A chia hết cho 2 và 9

\(A=10^{33}+8=10...000+8\)  ( 1033 có 33 chữ số 0 )

\(=>\)Tổng của A \(=1000...0+8=1+0+8=9\)

=> A chia hết cho 9  ( 1 )

Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )

Phần sau bạn lm tương tự nhé

2 tháng 1 2018

Vì A chia hết cho 18 

=> A chia hết cho 2 và 9

A=1033+8=10...000+8  ( 1033 có 33 chữ số 0 )

=>Tổng của A =1000...0+8=1+0+8=9

=> A chia hết cho 9  ( 1 )

Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )

Phần sau bạn làm tương tự nhé

21 tháng 7 2016

a, ta có 2 trường hợp:

+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2

+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2

vậy (n+10)(n+15) chia hết cho 2(đpcm)

17 tháng 10 2015

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

4 tháng 12 2021

còn cái nịt

còn đúng cái nịt thôi nha naruto