Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
Giải
Nhận xét : các số tự nhiên có số mũ dạng 4k + 1 thì luôn có giá trị bằng chính nó
Từ nhận xét trên ta xét tổng các chữ tận cùng của tổng các lũy thừa trên
Ta có tổng sau có chữ số tận cùng bằng tổng ban đầu
1 + 2 + 3 + 4 + 5 + 6 + ... + 2019 = 2019.(2019+1)/2
=2019.2020/2
Vì 2019.2020 có chữ số tận cùng bằng 0 nên 2019.2020/2 phải có chữ số tận cùng bằng 5
Vậy chữ số tận cùng của 1^5 + 2^5 + 3^5 + ... + 2019^5 là 5
Cách 1 :
- Chứng minh rằng A \(⋮\) 5 bằng cách nhóm A thành từng nhóm bốn số . Ta lại có A \(⋮\) 2 nên A \(⋮\) 10 .
\(\Rightarrow\) A tận cùng bằng 0
Cách 2 :
Hãy chứng minh rằng A = 221 - 2 .
A = 221 - 2 = ( 24 )5 . 2 - 2 = 165 . 2 - 2 = ...16 . 2 - 2 , tận cùng bằng 0
a) 72000 = (74)x(74)x..x(74) ( có 500 thừa số 74)
= (...1)x(...1)x....x(...1) = (...1)
=> chữ số tận cùng của 72000 là 1
b) 91999 x 19990 = 91999x1 = 91999 = (92)x(92)x...x(92)x9 ( có 99 số 92)
= (...1)x(...1)x...x(...1)x 9 = 9
=> chữ số tận cùng của 91999x19990 là 9
c) xl bn nha! mk ko bk lm câu c
3b-b=2b=32010-3
b=32010-3 /2
ta có
\(3^4\equiv1\left(mod10\right)\)
=>\(\left(3^4\right)^{25}\equiv1\left(mod10\right)\)
=>\(3^{100}-3\equiv-2\left(mod10\right)\)
=>(3^100-3)/2 =-1(mod10)
=>tận cùng của b là 9
a)\(3B=3^2+3^3+3^4+..+3^{2010}\)
\(3B-B=2B=3^{2010}-3\Rightarrow B=\frac{3^{2010}-3}{2}\)
b)Xét chữ số tận cùng của \(3^{2010}=3^{2008}.3^2=3^{4k}.3^2=\left(...1\right).9=\left(...9\right)\)
Suy ra \(2B=3^{2010}-3=\left(...9\right)-3=\left(...6\right)\)
Suy ra \(B=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy ...
a) A = 1 + 2 + 22 + 23 + ... + 22012
2A = 2 + 22 + 23 + 24 + ... + 22013
2A - A = (2 + 22 + 23 + 24 + ... + 22013) - (1 + 2 + 22 + 23 + ... + 22012)
A = 22013 - 1
b) A = 22013 - 1
A = 22012.2 - 1
A = (24)503.2 - 1
A = (...6)503.2 - 1
A = (...6).2 - 1
A = (...2) - 1
A = (...1)
c) A = 1 + 2 + 22 + 23 + ... + 22012 (có 2013 số; 2013 chia hết cho 3)
A = (1 + 2 + 22) + (23 + 24 + 25) + ... + (22010 + 22011 + 22012)
A = 7 + 23.(1 + 2 + 22) + ... + 22010.(1 + 2 + 22)
A = 7 + 23.7 + ... + 22010.7
\(A=7.\left(1+2^3+...+7^{2010}\right)⋮7\left(đpcm\right)\)
là số 3 còn nếu tính ra thì là số 9
3^1 dư 1 , 3^2 dư 2 , 3^3 dư 3 , 3^4 dư 0
103:3=34 dư 1
vậy chữ số tận cùng của 3^103 là 3