Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a0b = ab x 7
a x 100 + b = ( a x 10 + b ) x7
a x 100 + b = a x 10 x 7 + b x 7
Cùng bớt đi b
a x 100 = a x 70 + b x 6
Cùng bớt đi a x 70
a x 30 = b x 6
Cùng chia cho 6
a x 5 = b x 1
=>a = 1 ; b = 5
Vậy số đó là 15
2 bài kia bạn tự giải nha , mk lười lắm :)))))
cau hoi nay la cau hoi co 3 chu so chu khong hai la 2chu so
Gọi số cần tìm là abcd
Theo đề bài ta có:
abcd:9=bcd
=> abcd phải chia hết cho 0
=> a+b+c+d chia hết cho 9
Mà b+c+d=15
=> a+15 chia hết cho 9
=> a chỉ có thể bằng 3
Thay a=3 thì ta có:
3bcd:9=bcd
3bcd=bcdx9
3000+bcd=bcd+bcdx8
=>3000=bcdx8
=> bcd=3000:8=375
=> abcd=3375
Gọi số cần tìm đó là abcd
Khi xóa 1 chữ số ở hàng nghìn ta được bcd
Ta có :
bcd . 9 = abcd
=> bcd . 9 = a000 + bcd
bcd . 9 - bcd = a000
=> 8 . bcd = a000
bcd = a000 : 8
Vì số chia hết cho 8 tận cùng 3 chữ số chia hết cho 8 nên :
a = { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }
Nếu thay a = 8 thì ta được 8000 : 8 = 1000 là số có 4 chữ số , bcd = : số có 3 chữ số.
Nên số đó là : 2250 ; 1125 ; 4500 ; 5265 ; 3375 ; 7875
Bài 2 : Nếu xóa đi chữ số hàng nghìn thì được số mới kém số cũ 1000 đơn vị.
Ta có sơ đồ:
Số cũ: l-----l-----l-----l-----l-----l-----l-----l-----l-----l
1000 đơn vị( 8 phần )
Số mới:l-----l
Số cần tìm ( số cũ ) là : 1000 : ( 9 - 1 ) x 9 = 1125
( bài 1 bạn xem lại đề )
abc là số phải tìm abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp: (1)
Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2 Vậy a = 2, b = 5, c = 0
Số phải tìm là 250 (2)
Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là: 250, 125, 375
Gọi chữ số ban đầu là 3ab (gạch đầu)
Vì khi xóa đi chữ số 3 ở hàng trăm thì chữ số đó giảm 9 lần
=> Ta có phương trình:
3ab : ab = 9
<=> (300 + 10a + b) : (10a + b) = 9
<=> 300 + 10a + b = 90a + 9b
<=> 10a + b - 90a - 9b = -300
<=> -80a - 8b = -300
<=> -8(10a + b) = -300
<=> 10a + b ≈ 38
<=> ab = 38
Vậy chữ số ban đầu là 338
1,
gọi ab là số cần tìm (a khác 0)
gọi a0b là số ab sau khi thêm 0 vào chính giữa
gọi 1a0b là số a0b sau khi thêm 1 vào bên trái
ta có:
ab x 10=a0b
(ax10+bx1)x10=a0b
ax100+bx10=ax100+bx1
bx10=b(cùng trừ 2 vế cho a*100)
vì b x10=b nên b chỉ có thể là 0
vì b=0 nên ab=a0 và a0b=a00
ta lại có : a00x 3=1a00
a00 x 3=1000+a00
a00 x 2=1000(cùng trừ hai vế cho a00)
a00=1000:2
a=5
Vậy ab = 50
Gọi số phải tìm là 1abc
Ta có:1abc:abc=9
=>(1000+abc):abc=9
=>1000:abc+abc:abc=9
=>1000:abc+1=9
=>1000:abc=9-1
=>1000:abc=8
=>abc=1000:8
=>abc=125
Vậy số phải tìm là 1125