Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20
S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
S = (1 - 3 + 3^2 - 3^3) + ... + (3^96 - 3^97 + 3^98 - 3^99 )
S = (-20) + (-20) +...+ (-20) (24 số -20)
S = (-20).24 chia hết cho -20
=> đpcm
Câu hỏi của Nguyễn Dương - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1
S = (1+3+3^2)+(3^3+3^4+3^5)+.....+(3^97+3^98+3^99)
= 10+3^3.(1+3+3^2)+.....+3^97.(1+3+3^2)
= 10+3^3.10+.....+3^97.10
= 10.(1+3^3+....+3^97) chia hết cho 10
Mà 10 chia hết cho 5 => S chia hết cho 5
k mk nha
S=1-3+32-33+.....+398-399
=(1-3+32-33)+(34-35+36-37)+....+(396-397+398-399)
= -20+34(1-3+32-33)+....+396(1-3+32-33)
= -20+34*(-20)+....+396*(-20)
= -20*(1+34+....+396)chia hết cho -20
nên S chia hết cho -20
Vậy S chia hết cho -20