K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20

S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99

S = (1 - 3 + 3^2 - 3^3) + ... + (3^96 - 3^97 + 3^98 - 3^99 )

S = (-20) + (-20) +...+ (-20)   (24 số -20)

S = (-20).24 chia hết cho -20

=> đpcm

14 tháng 4 2019

Câu hỏi của Nguyễn Dương - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo.

17 tháng 11 2019

Ta có : S = 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 

      => 3S = 3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 

Lấy 3S + S = (3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 ) + ( 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 )

          4S    = 3100 + 1

=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên) 

=> 3100 : 4 dư 1 

10 tháng 3 2017

Ahihi mới đi học về nên hơi muộn, sorry nhé ~~

Ôn tập toán 6

25 tháng 1 2019
https://i.imgur.com/4MVchGX.jpg
4 tháng 12 2017

S = (1+3+3^2)+(3^3+3^4+3^5)+.....+(3^97+3^98+3^99)

   = 10+3^3.(1+3+3^2)+.....+3^97.(1+3+3^2)

   = 10+3^3.10+.....+3^97.10

   = 10.(1+3^3+....+3^97) chia hết cho 10

Mà 10 chia hết cho 5 => S chia hết cho 5 

k mk nha

20 tháng 1 2016

S=1-3+32-33+.....+398-399

  =(1-3+32-33)+(34-35+36-37)+....+(396-397+398-399)

  = -20+34(1-3+32-33)+....+396(1-3+32-33)

  = -20+34*(-20)+....+396*(-20)

  = -20*(1+34+....+396)chia hết cho -20

nên S chia hết cho -20

Vậy S chia hết cho -20