K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có (xy/z + yz/x)>=2y ( cauchy ) (1) 
(yz/x+zx/y)>=2z (2) 
(xy/z + zx/y)>=2x (3) 
Lấy (1)+(2)+(3) chia 2 mỗi vế ta có đpcm 

17 tháng 7 2016

Ta có : \(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\Leftrightarrow x^2+y^2+z^2=0\) (Vì xy+yz+zx = 0)

Vì \(x^2\ge0;y^2\ge0;z^2\ge0\Rightarrow x^2+y^2+z^2=0\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

10 tháng 2 2016

1/x^2+1/y^2+1/z^2=1/xy+1/yz+1/zx

 2:(1/x^2+1/y^2+1/z^2)=2:(1/xy+1/yz+1/zx)

2x^2+2y^2+2z^2=2xy+2yz+2xz

2x^2+2y^2+2z^2-2xy-2yz-2xz=0

(x^2-2xy+y^2)+(x^2-2xz+z^2)+(y^2-2yz+z^2)=0

(x-y)^2+(x-z)^2+(y-z)^2=0

=> (x-y)^2=0 và (x-z)^2=0 và (y-z)^2=0

=> x-y=0 và x-z=0 và y-z=0

=> x=y và x=z và y=z

=> x=y=z (đpcm)

 

10 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) Vô câu hỏi tương tự 

26 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) tương tự 

30 tháng 11 2021

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)

Vậy ta đc đpcm

3 tháng 1 2017

bài 1

ab+bc+ca=0

=>ab+bc=-ca

ta có (a+b)(b+c)(c+a)/abc

=> (ab+ac+bc+b2)(c+a)/abc

=> (0+b2)(c+a)/abc

=>b2c+b2a/abc

=>b(ab+bc)/abc

=>b(-ac)/abc

=>-abc/abc=-1