K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
$2(x+y)=3(y+z)=4(x+z)$

$\Rightarrow \frac{x+y}{6}=\frac{y+z}{4}=\frac{x+z}{3}$ (chia cả 3 vế cho $12$)

Đặt giá trị trên là $t$

$\Rightarrow x+y=6t; y+z=4t; z+x=3t$

$\Rightarrow x+y+z=(6t+4t+3t):2=6,5t$

$x=6,5t-4t=2,5t; y=6,5t-3t=3,5t; z=6,5t-6t=0,5t$. Khi đó:
$P=\frac{2,5t}{3,5t}+\frac{3,5t}{0,5t}+\frac{0,5t}{2,5t}$

$=\frac{2,5}{3,5}+\frac{3,5}{0,5}+\frac{0,5}{2,5}=\frac{277}{35}$

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Bạn tham khảo tại đây:

https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762

30 tháng 1 2022

Đặt \(x=2k;y=5k;z=7k\)

\(P=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4k}{5k}=\dfrac{4}{5}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
Nếu $x+y+z=0$ thì:

$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$

$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$

$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$ 

(thỏa mãn đkđb)

Khi đó:

$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$

$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$

Nếu $x+y+z\neq 0$

Áp dụng TCDTSBN:

$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$

$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:

$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$

sai đề bạn ơi

26 tháng 8 2018

sửa lại đề: CMR: ( x+y+z ).\(\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)=36\)

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

3 tháng 11 2021

\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)

<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)

<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)

đặt x+y+z = t 

=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)

=> x=y=z 

ta lại có 

\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)

vì x=y=z  => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

3 tháng 11 2021

gật gật

20 tháng 7 2017

\(\text{Ta có : }\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{y+x}\\ \Rightarrow\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\\ =\dfrac{\left(y+z\right)+\left(x+z\right)+\left(y+x\right)}{x+y+z}\\ =\dfrac{y+z+x+z+y+x}{x+y+z}\\ =\dfrac{\left(y+y\right)+\left(z+z\right)+\left(x+x\right)}{x+y+z}\\ =\dfrac{2y+2z+2x}{x+y+z}\\ =\dfrac{2\left(x+y+z\right)}{x+y+z}\\ =2\\ \)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z}{x}=2\\\dfrac{x+z}{y}=2\\\dfrac{y+x}{z}=2\end{matrix}\right.\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=2+2+2=6\)

Vậy \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=6\)

30 tháng 3 2018

+) Nếu \(x+y+z\ne0\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)

\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)

\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)

+) Nếu \(x+y+z\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)

Vậy ..

30 tháng 3 2018

Hằng à,t chưa thấy đứa này ngu như mày

\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j