\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>14\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


23 tháng 12 2017

cảm ơn

20 tháng 12 2016

\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

22 tháng 12 2016

=2/xy+yz+zx+(1/xy+yz+zx+2/x2+y2+z2)>=6/(x+y+z)2+8/(x+y+z)2=6+8=14     :ap dung xy+yz+zx=<(x+y+z)2/3 va :1/a+1/b>=4/a+b         dau=xay ra<=>x=y=z=1/3

NV
11 tháng 10 2020

Đề bài sai

Phản ví dụ: với \(x=y=z=2\Rightarrow x^2+y^2+z^2=12>9\) (thỏa mãn điều kiện)

Nhưng \(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{3}{2}< \sqrt{3}\)

26 tháng 5 2018

Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng theo vế:

\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)

\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)

Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)

\(\Rightarrow A\le\dfrac{2020}{3}\)

Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)

Vậy ko ra yếu zzzz

26 tháng 5 2018

c-s dưới mẫu xem

NV
16 tháng 10 2019

\(P=\sum\frac{x^2\left(y+z\right)}{yz}\ge\sum\frac{4x^2\left(y+z\right)}{\left(y+z\right)^2}=\sum\frac{4x^2}{y+z}\ge\frac{4\left(x+y+z\right)^2}{y+z+z+x+x+y}=2\left(x+y+z\right)=2\)

\(P_{min}=2\) khi \(x=y=z=\frac{1}{3}\)

Câu 2 có dương không nhỉ? Không dương thì không làm được

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{6}{\left(x+y\right)^2}\ge6\)

\(A_{min}=6\) khi \(x=y=\frac{1}{2}\)

16 tháng 10 2019

1) \(P\ge\frac{x^2.2\sqrt{yz}}{yz}+\frac{y^2.2\sqrt{zx}}{zx}+\frac{z^2.2\sqrt{xy}}{xy}=\frac{2x^2}{\sqrt{yz}}+\frac{2y^2}{\sqrt{zx}}+\frac{2z^2}{\sqrt{xy}}\ge4\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=4\left\{\left[\frac{x^2}{y+z}+\frac{1}{4}\left(y+z\right)\right]+\left[\frac{y^2}{z+x}+\frac{1}{4}\left(z+x\right)\right]+\left[\frac{z^2}{x+y}+\frac{1}{4}\left(x+y\right)\right]\right\}-2\left(x+y+z\right)\ge4\left(x+y+z\right)-2\left(x+y+z\right)=2\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

2) \(A=\left[\frac{1}{x^2+y^2}+4\left(x^2+y^2\right)\right]+\left(\frac{1}{xy}+16xy\right)-4\left(x+y\right)^2-8xy\ge4+8-4-2.\left(x+y\right)^2=8-2.\left(x+y\right)^2\ge8-2=6\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)