Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)
Áp dụng BĐT Bunhiacopxki ta có:
\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)
\(\Leftrightarrow A\ge3\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)
Áp dụng BĐT Cô - si, ta có:
\(x+y+z+xy+yz+xz\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}\)
\(+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2xz+3}{2}\)
\(=\frac{\left(x+y+z\right)^2+3}{2}\)
\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge9\)
Vì x,y,z > 0 nên \(x+y+z\ge3\)
\(x^2+y^2+z^2=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\)
\(\ge2\left(x+y+z\right)-3\ge2.3-3=3\)
Vậy \(x^2+y^2+z^2\ge3\left(đpcm\right)\)
Vì \(17.\left(xy+yz+zx\right)=105\Rightarrow\left(xy+yz+zx\right)=\frac{105}{17}\)
Ta có :
\(\left(x+z+y\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=19+2\left(\frac{105}{17}\right)=31\frac{6}{17}\)
Do đó : \(x+y+z=\sqrt{31\frac{6}{17}}\)
hoặc \(x+y+z=-\sqrt{31\frac{6}{17}}\)
Chúc bạn học tốt nha !!!
Bạn chép sai đề, đề đúng phải là \(x^2+y^2+z^2\ge3\)
Áp dụng các BĐT quen thuộc:
\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
Cộng vế với vế:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)