K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chắc =1 đó chỉ cần đọc kĩ đề thôi

NV
15 tháng 3 2019

\(A=\left(1+\frac{y}{2x}+2x+y\right)\left(1+\frac{4}{\sqrt{y}}\right)^2\ge\left(1+2\sqrt{y}+y\right)\left(1+\frac{4}{\sqrt{y}}\right)^2\)

\(\Rightarrow A\ge\left(1+\sqrt{y}\right)^2\left(1+\frac{4}{\sqrt{y}}\right)^2=\left(1+\frac{4}{\sqrt{y}}+\sqrt{y}+4\right)^2\ge\left(1+2\sqrt{4}+4\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

15 tháng 3 2019

giải thích giùm mình cái dòng 2 ( ở cái dấu "=" thứ 2 từ trái qua ) nhé

15 tháng 4 2018

x=4,y=6

15 tháng 4 2018

Mình cần cả cách trình bày nữa bạn

NV
7 tháng 6 2020

Ta có: \(x^2+\frac{1}{4}\ge x\Rightarrow x^2+y+\frac{3}{4}\ge x+y+\frac{1}{2}\)

Tương tự \(y^2+x+\frac{3}{4}\ge x+y+\frac{1}{2}\)

\(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(x+y+\frac{1}{2}\right)^2\) (1)

Mặt khác: \(\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\le\frac{1}{4}\left(2x+2y+1\right)^2=\left(x+y+\frac{1}{2}\right)^2\) (2)

(1);(2) \(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)