Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)
dấu = xảy ra khi \(x=y=\frac{1}{2}\)
vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)
Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:
\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=
\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)
\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)
Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Mk k biết
lần sau phải giải bài toán này chứ