Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+x-5y+4\)
Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được :
\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)
\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)
\(B=2x^2-3y^2+4z^3\)
Thay x = 2 ; y = z = -23 vào biểu thức trên ta được :
\(=2.4-3.169+4.2197=8-507+8788=8289\)
tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi.
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)
Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)
a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)
\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)
b) Từ (1) => x + z = 2y
Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)
Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)
=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM
b, Ta có:
\(xy+2x-y=5\)
\(\Rightarrow\) \(xy+2x-y-2=5-2\)
\(\Rightarrow\left(xy-y\right)+\left(2x-2\right)=3\)
\(\Rightarrow y\left(x-1\right)+2\left(x-1\right)=3\)
\(\Rightarrow\left(y+2\right)\left(x-1\right)=3\)
\(\Rightarrow\left\{\left(y+2\right)\left(x-1\right)\right\}\inƯ_{\left(3\right)}\)
\(\Rightarrow\left\{\left(y+2\right)\left(x-1\right)\right\}\in\left\{\left(3;1\right)\left(1;3\right)\left(-1;-3\right)\left(-3;-1\right)\right\}\)
Ta có bảng sau:
\(y+2\) | \(3\) | \(1\) | \(-3\) | \(-1\) |
\(y\) | \(1\) | \(-1\) | \(-5\) | \(-3\) |
\(x-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(x\) | \(2\) | \(4\) | \(0\) | \(-2\) |
- Các số trên thỏa mãn điều kiện: \(x;y\in Z\)
\(\Rightarrow\left\{\left(x;y\right)\right\}\in\left\{\left(2;1\right)\left(4;-1\right)\left(0;-5\right)\left(-2;-3\right)\right\}\)
Vậy \(\left\{\left(x;y\right)\right\}\in\left\{\left(2;1\right)\left(4;-1\right)\left(0;-5\right)\left(-2;-3\right)\right\}\)
Phần a tớ chưa nghĩ ra
a: =>(x-1)(y+4)=15
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1;y+4\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(3;5\right);\left(5;3\right)\right\}\\\left(x-1;y+4\right)\in\left\{\left(-1;-15\right);\left(-15;-1\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(2;11\right);\left(16;-3\right);\left(4;1\right);\left(6;-1\right);\left(0;-19\right);\left(-14;-5\right);\left(-2;-9\right);\left(-4;-7\right)\right\}\)
d: =>xy+3x-y-3=3
=>(y+3)(x-1)=3
\(\Leftrightarrow\left(x-1;y+3\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(2;0\right);\left(4;-2\right);\left(0;-6\right);\left(-2;-4\right)\right\}\)
b: =>(2x+1)*y=7
=>\(\left(2x+1;y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(0;7\right);\left(3;1\right);\left(-1;-7\right);\left(-4;-1\right)\right\}\)