K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
0
VQ
0
HT
0
PT
0
DT
1
19 tháng 5 2018
Áp dụng BĐT AM-GM cho 3 số dương a,b,c:
\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)
Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)
Và: \(z^3+1+1\ge3z\left(3\right)\)
Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)
\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)
Dấu "=" xảy ra khi x=y=z=1
NT
0
NM
2
x,y€0;1]
(x-1)(y-1)≥0
xy-(x+y)+1≥0
3xy-3(x+y)+3≥0:; -2(x+y)+3≥0
(x+y)≤3/2
x+y=3xy=>9(xy)^2-4(xy)≥0=> xy≥4/9
=>(x+y)€[4/3;3/2]
P=x^2+y^2-4xy=(x+y)^2-6xy=(x+y)^2-2(x+y)=[(x+y-1]^2-1
Pmin=(4/3-1)^2-1=1/9-1=-8/9
khi x+y=4 /3; xy=4/9
x=y=2/3
Pmax=(3/2-1)^2-1=1/4-1=-3/4
khi x or y =1
(x,y)=(1,1/2);(1/2;1)
\(P=x^2+y^2-4xy\)
\(P=\left(x+y\right)^2-2xy-4xy\)
\(P=\left(3xy\right)^2-6xy\)
\(P=\left(3xy\right)^2-2.3xy.1+1-1\)
\(P=\left(3xy-1\right)^2-1\ge-1\)
dấu \("="\) xảy ra \(\Leftrightarrow3xy-1=0\Leftrightarrow xy=\dfrac{1}{3}\)
vậy MIN \(P=-1\Leftrightarrow xy=\dfrac{1}{3}\)