\(\left(x+\frac{2}{x}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 4 2020

\(Q\ge\frac{1}{2}\left(x+\frac{2}{x}+y+\frac{2}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{8}{x+y}\right)^2\)

\(Q\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}+\frac{4}{x+y}\right)^2\)

\(Q\ge\frac{1}{2}\left(2\sqrt{\frac{4\left(x+y\right)}{x+y}}+\frac{4}{2}\right)^2=18\)

\(Q_{min}=18\) khi \(x=y=1\)

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

NV
27 tháng 4 2020

\(C=\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}=\frac{8}{9}.\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{\left(x+y+2\right)^2}{9\left(xy+2x+2y\right)}+\frac{xy+2x+2y}{\left(x+y+2\right)^2}\)

\(C\ge\frac{4}{9}.\frac{2x^2+2y^2+4xy+8x+8x+8}{xy+2x+2y}+2\sqrt{\frac{\left(x+y+2\right)^2\left(xy+2x+2y\right)}{9\left(xy+2x+2y\right)\left(x+y+2\right)^2}}\)

\(C\ge\frac{4}{9}.\frac{\left(x^2+y^2\right)+\left(x^2+4\right)+\left(y^2+4\right)+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)

\(C\ge\frac{4}{9}.\frac{2xy+4x+4y+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)

\(C\ge\frac{4}{9}.\frac{6\left(xy+2x+2y\right)}{xy+2x+2y}+\frac{2}{3}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

\(C_{min}=\frac{10}{3}\) khi \(x=y=2\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

8 tháng 6 2016

Em mới học lớp 7

NV
9 tháng 5 2020

Đặt \(t=\frac{x}{y}+\frac{y}{x}>0\Rightarrow t^2=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\Rightarrow t\ge2\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

\(\Rightarrow B=2\left(t^2-2\right)-5t+6=2t^2-5t+2\)

\(B=\left(2t-1\right)\left(t-2\right)\)

Do \(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

\(B_{min}=0\) khi \(t=2\) hay \(x=y\)

NV
27 tháng 4 2020

\(C=\frac{\left(x+y\right)^2-4xy}{xy}+\frac{4xy}{\left(x+y\right)^2}=\frac{\left(x+y\right)^2}{xy}+\frac{4xy}{\left(x+y\right)^2}-4\)

\(C=\frac{\left(x+y\right)^2}{4xy}+\frac{4xy}{\left(x+y\right)^2}+\frac{3\left(x+y\right)^2}{4xy}-4\)

\(C\ge2\sqrt{\frac{\left(x+y\right)^2.4xy}{4xy\left(x+y\right)^2}}+\frac{3.4xy}{4xy}-4=1\)

\(C_{min}=1\) khi \(x=y\)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)