Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y+z=0\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)=3xyz\)(đpcm)
Xét \(A=x^3+y^3+z^3-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+yz+z^2\right)-3xy\left(x+y+z\right)\)
Với \(x+y+z=0\) thì \(A=0.\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy.0=0\)
\(A=x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\) (đpcm)
x+y+z=0=> (x+y+z)(x2+y2+z2-xy-yz-zx)=0 (*)
Nhân (*) ra được :
x3+y3+z3-3xyz=0<=> x3+y3+z3= 3xyz(đpcm)
a,Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
b, Từ:
x + y + z = 0
=> x + y = -z
<=> (x + y)^3 = (-z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2
<=> x^3 + y^3 + z^3 = -3xy(x+y)
<=> x^3 + y^3 + z^3 = -3xy(-z)
<=> x^3 + y^3 + z^3 = 3xyz
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
Ta có :
\(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\)
\(\Leftrightarrow\frac{-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{x+y+z}\le0\)
\(\Leftrightarrow-\left(x^2+y^2+z^2-xy-xz-yz\right)\le0\)
\(\Leftrightarrow-\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\le0\)
\(\Leftrightarrow-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2\le0\) (luôn đúng)
Vậy \(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\forall x+y+z\ne0\)
Bạn giải thích giùm mình cái dấu tương đương thứ nhất với phần sau thì mình làm được chỗ đó mình lại không hiểu cho lắm
= ( x3 + 3x2 y +3xy2 + y3 ) + z3 - 3 x 2 y - 3xy2 - 3xyz
= ( x + y ) 3 + z3 ] - 3xy x ( x + y + z )
= ( x + y + z ) x [ ( x + y ) 2 - z ( x + y ) + z2 ] - 3xy x ( x + y + z )
= ( x + y + z ) x ( x2 + 2xy + y2 + zx - zy + z2 - 3xy )
= ( x + y + z ) . ( x2 + y2 + z2 - xy - yz - zx )
Liên quan thế từ x + y + z sang a +b +c