Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
* Chứng minh \(x\vdots 3, y\vdots 3\Rightarrow x^2+y^2\vdots 3(*)\)
Thật vậy \(x\vdots 3; y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\)
* Chứng minh \(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3(**)\)
Tính chất: Số chính phương $x^2$ khi chia cho $3$ dư $0$ hoặc $1$ (để chứng minh điều này, bạn có thể đặt $x=3k,3k+1,3k+2$ và khai triển ta có ngay đpcm)
Áp dụng tính chất trên:
+) Nếu \(x^2\) chia hết cho $3$, $y^2$ chia $3$ dư $1$ \(\rightarrow x^2+y^2\) chia 3 dư 1 (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia hết cho $3$, thì $x^2+y^2$ chia 3 dư $1$ (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia 3 dư 1, thì $x^2+y^2$ chia 3 dư $2$ (trái giả thiết)
Do đó $x^2,y^2$ phải cùng chia hết cho $3$. Mà $3$ là số nguyên tố nên \(\Rightarrow x\vdots 3; y\vdots 3\) (đpcm)
Từ \((*) (**): x^2+y^2\vdots 3\Leftrightarrow x\vdots 3; y\vdots 3\)
Ta có đpcm.
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
x mũ 2 + y mũ 2 chia hết cho 3 => x mũ 2, y mũ 2 là số lẻ và là bội của 3. Mà số lẻ chia hết cho 3 + với số lẻ chia hết cho 3 thì luôn luôn cũng chia hết cho 3 => x,y đểu chia hết cho 3.
Bạn có thể tham khảo ở đây :
Câu hỏi của Ngu Người - Toán lớp 9 - Học toán với OnlineMath