Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x-y=a\\z-x=b\\y-z=c\end{matrix}\right.\) đề bài trở thành \(\left\{{}\begin{matrix}abc\ne0\\a+b+c=0\\ab=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\b=-\frac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{c^2}=\frac{1}{\left(a+b\right)^2}\\b^2=\frac{1}{a^2}\end{matrix}\right.\)
Ta cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge4\)
\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+a^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}\)
\(P=\left(a-\frac{1}{a}\right)^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}+2\ge2\sqrt{\left(a-\frac{1}{a}\right)^2.\frac{1}{\left(a-\frac{1}{a}\right)^2}}+2=4\) (đpcm)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
\(A=\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge\frac{\left(x+y+z-3\right)^2}{x+y+z}=\frac{\left(2-3\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow A_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{2}{3}\)
Ta đặt \(\left\{\begin{matrix}x+z=a\\y+z=b\end{matrix}\right.\Rightarrow ab=1\)
\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)
\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)
\(\ge2+2=4\)