Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Minh Triều - Toán lớp 8 - Học toán với OnlineMath
Em xem bài làm tương tự ở link này nhé!!! Chú ý thay kết quả khác nhé!
Ta thấy: \(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Thay \(x+y+z=1;x^3+y^3+z^3=1\)ta được:
\(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\Leftrightarrow-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)
Xét trường hợp: \(x=-y;\)thay vào đẳng thức: \(x+y+z=1\Rightarrow z=1\)
Do \(x=-y\Rightarrow x^{2017}=-y^{2017}\Rightarrow x^{2017}+y^{2017}=0\)(Số mũ lẻ)
Khi đó \(A=x^{2017}+y^{2017}+z^{2017}=0+z^{2017}\)
Lại có \(z=1\Rightarrow A=0+1=1.\)
Lập luận tương tự với 2 TH còn lại.
Vậy \(A=1.\)
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Ta có: \(x^3+y^3+z^3=x+y+z+2017\left(1\right)\)
\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2017\)
chứng minh được :
\(x^3-x=x.\left(x^2-1\right)=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y^2-1\right)=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-z=z.\left(z^2-1\right)=z.\left(z-1\right).\left(z+1\right)\)
Vì x,y,z là các số nguyên nên:
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 , mà 2017 không chia hết cho 3
Vậy không có các số nguyên x,y,z thỏa mãn yêu cầu bài toán
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên