K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

drthe46he46he46

22 tháng 10 2016

Ta có

x + y \(\ge\)xy(4 - x - y)

<=> x + y + xy2 + yx2 - 4xy \(\ge0\)

 <=> \(\left(x-2xy+xy^2\right)+\left(y-2xy+yx^2\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-y\sqrt{x}\right)^2+\left(\sqrt{y}-x\sqrt{y}\right)^2\ge0\)

=> ĐPCM

2 tháng 3 2021

Vì x,y,z dương nên xyz dương

nên chia cả hai vế của bđt ta được bđt \(\frac{x+y}{xyz}\ge1\)và ta cần chứng minh bđt này đúng thì bđt ban đầu được chứng minh

Ta có \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)( Cauchy-Schwarz dạng Engel ) (*)

Lại có \(z\left(x+y\right)\le\left(\frac{z+x+y}{2}\right)^2=2^2=4\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{4}=1\)( AM-GM ) (**)

Từ (*) và (**) => \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge1\)( đpcm )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y,z>0\\x+y+z=4\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

26 tháng 11 2016

đxcccx

26 tháng 11 2016

x+yddccs