Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của s2 Lắc Lư s2 - Toán lớp 9 - Học toán với OnlineMath
Bài này dùng Cô si ngược dấu:
Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)
Dấu "=' xảy ra tại a = b = c = 1
Vậy min A = 2 khi và chỉ khi a = b = c = 1
tth ngược dấu nhé
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)
\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)
\(\Leftrightarrow\)\(-A+4\ge2\)
\(\Leftrightarrow\)\(A\le2\)
+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)
+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)
+ \(x^2+1\ge2x\forall x\)
\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)
\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)
\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)
Dấu "=" xảy ra <=> x = 1
+ Tương tự ta cm đc :
\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1
\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1
Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)
\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)
Dấu "=" xảy ra <=> x = y = z = 1.
+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)
\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )
Dấu "=" xảy ra <=> y = 1.
Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.
\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.
Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)
( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)
Dấu "=" xảy ra <=> x = y = z = 1.
Từ (1) và (2) suy ra
\(P\ge\frac{3}{2}+\frac{3}{2}=3\)
P = 3 \(\Leftrightarrow x=y=z=1\)
Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).