K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

Bình phương 2 vế đẳng thức x + y + z = 3 , ta được : 

x2 + y2 + z2 + 2 ( xy + yz + zx ) = 9     (1)

tức là A + 2B = 9

Dễ dàng chứng minh được :

> B      (2)

Xảy ra đẳng thức khi và chỉ khi x = y = z

a, Từ (1) và (2) suy ra 3A > A + 2B = 9, nên A  > 3

Do đó min A= 3 khi và chỉ khi x = y = z =1

b, Từ (1) và (2) suy ra 3B < A + 2B = 9 , nên B < 3 . Do đó max B = 3 khi và chỉ khi x = y = z =1

c, Ta có  A + 2B = 9 mà B <  3 ( câu b ) nên A + B > 6

Do đó min ( A + B ) = 6 khi và chỉ khi x = y = z = 1

5 tháng 6 2016

hướng dẫn cách giải tại đây: http://123doc.org/document/27702-ba-phuong-phap-tim-gia-tri-lon-nhat-va-nho-nhat.htm

3 tháng 11 2016

 1/ x + y + z = 3. Tìm Max P = xy + yz + xz 

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2/ x² + ax + bc = 0 (1) 
x² + bx + ac =0 (2) 

Gọi x1 ; x2 là 2 nghiệm của pt (1) và x1 ; x3 là 2 nghiệm của pt (2) 
x1 là nghiệm chung của 2 pt 

x1 là nghiệm của (1) --> (x1)² + a(x1) + bc = 0 
x1 là nghiệm của (2) --> (x1)² + b(x1) + ac = 0 

trừ vế với vế 2 pt trên, ta được: (x1).(a - b) + c(b - a) = 0 
<=> (x1).(a - b) = c(a - b) 
<=> x1 = c 
thay vào (1) ta có: c² + ac + bc = 0 
--> c + a + b = 0 (do c ≠ 0 nên chia cả 2 vế cho c) 
--> a = - b - c ; b = - a - c ; a + b = -c 

thay a = - b - c vào (1): 
--> x² - (b + c)x + bc = 0 (1') 
Áp dụng Viet, ta có: x1 + x2 = b + c ; mà x1 = c --> x2 = b 

tương tự, thay b = - a - c vào (2): 
--> x² - (a + c)x + ac = 0 (2') 
Áp dụng Viet: x1 + x3 = a + c ; mà x1 = c --> x3 = a 

Vậy 
{ x2 + x3 = a + b 
{ x2.x3 = ab 
Theo định lý Viet đảo thì x2 và x3 là 2 nghiệm của pt: 
x² - (a + b)x + ab =0 
<=> x² + cx + ab =0 (do a + b = -c theo CM trên) --> ĐPCM 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
3/ Cho P(x) = x³ + ax² + bx + c . Giả sử P(1) = 5 ; P(2) = 10 . tính [P(12) - P(-9)] / 105 

Đặt Q(x) = P(x) - 5x 
Ta có: 
Q(1) = P(1) - 5.1 = 5 - 5 = 0 --> x = 1 là 1 nghiệm của Q(x) 
Q(2) = P(2) - 5.2 = 10 - 10 = 0 --> x = 2 cũng là 1 nghiệm của Q(x) 

Do P(x) là đa thức bậc 3 --> Q(x) = P(x) - 5x cũng là đa thức bậc 3 
--> Q(x) có 3 nghiệm, mà 2 nghiệm đã biết ở trên là x = 1 ; x = 2 

Q(x) được biểu diễn dưới dạng: 
Q(x) = (x - 1)(x - 2)(x - m) 
mà Q(x) = P(x) - 5x 
--> P(x) = Q(x) + 5x 
--> P(x) = (x - 1)(x - 2)(x - m) + 5x 

P(12) = (12 - 1)(12 - 2)(12 - m) + 5.12 = 11.10.(12 - m) + 60 
P(-9) = (-9 - 1)(-9 - 2)(-9 - m) + 5.(-9) = -10.11.(9 + m) - 45 

--> [ P(12) - P(-9) ] / 105 
= [ 11.10.(12 - m) + 60 + 10.11.(9 + m) + 45 ] / 105 
= [ 11.10(12 - m + 9 + m) + 105) ] / 105 
= (10.11.21 + 105) / 105 
= (2.5.11.21 + 105) / 105 
= (2.11.105 + 105) / 105 
= 22 + 1 = 23 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

31 tháng 10 2016

a) 

Theo bất đẳng thức Cauchy - Schwarz: 
(x² + y² + z²)(1 + 1 + 1) 
= (x² + y² + z²)(1² + 1² + 1²) ≥ (x + y + z)² 
<--> (x² + y² + z²)(1² + 1² + 1²) ≥ 3² = 9 
<--> 3(x² + y² + z²) ≥ 9 
<--> x² + y² + z² ≥ 3 
--> M ≥ 3 
--> min M = 3 khi x = y = z = 1

b) 
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2/ x² + ax + bc = 0 (1) 
x² + bx + ac =0 (2) 

Gọi x1 ; x2 là 2 nghiệm của pt (1) và x1 ; x3 là 2 nghiệm của pt (2) 
x1 là nghiệm chung của 2 pt 

x1 là nghiệm của (1) --> (x1)² + a(x1) + bc = 0 
x1 là nghiệm của (2) --> (x1)² + b(x1) + ac = 0 

trừ vế với vế 2 pt trên, ta được: (x1).(a - b) + c(b - a) = 0 
<=> (x1).(a - b) = c(a - b) 
<=> x1 = c 
thay vào (1) ta có: c² + ac + bc = 0 
--> c + a + b = 0 (do c ≠ 0 nên chia cả 2 vế cho c) 
--> a = - b - c ; b = - a - c ; a + b = -c 

thay a = - b - c vào (1): 
--> x² - (b + c)x + bc = 0 (1') 
Áp dụng Viet, ta có: x1 + x2 = b + c ; mà x1 = c --> x2 = b 

tương tự, thay b = - a - c vào (2): 
--> x² - (a + c)x + ac = 0 (2') 
Áp dụng Viet: x1 + x3 = a + c ; mà x1 = c --> x3 = a 

Vậy 
{ x2 + x3 = a + b 
{ x2.x3 = ab 
Theo định lý Viet đảo thì x2 và x3 là 2 nghiệm của pt: 
x² - (a + b)x + ab =0 
<=> x² + cx + ab =0 (do a + b = -c theo CM trên) --> ĐPCM 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
3/ Cho P(x) = x³ + ax² + bx + c . Giả sử P(1) = 5 ; P(2) = 10 . tính [P(12) - P(-9)] / 105 

Đặt Q(x) = P(x) - 5x 
Ta có: 
Q(1) = P(1) - 5.1 = 5 - 5 = 0 --> x = 1 là 1 nghiệm của Q(x) 
Q(2) = P(2) - 5.2 = 10 - 10 = 0 --> x = 2 cũng là 1 nghiệm của Q(x) 

Do P(x) là đa thức bậc 3 --> Q(x) = P(x) - 5x cũng là đa thức bậc 3 
--> Q(x) có 3 nghiệm, mà 2 nghiệm đã biết ở trên là x = 1 ; x = 2 

Q(x) được biểu diễn dưới dạng: 
Q(x) = (x - 1)(x - 2)(x - m) 
mà Q(x) = P(x) - 5x 
--> P(x) = Q(x) + 5x 
--> P(x) = (x - 1)(x - 2)(x - m) + 5x 

P(12) = (12 - 1)(12 - 2)(12 - m) + 5.12 = 11.10.(12 - m) + 60 
P(-9) = (-9 - 1)(-9 - 2)(-9 - m) + 5.(-9) = -10.11.(9 + m) - 45 

--> [ P(12) - P(-9) ] / 105 
= [ 11.10.(12 - m) + 60 + 10.11.(9 + m) + 45 ] / 105 
= [ 11.10(12 - m + 9 + m) + 105) ] / 105 
= (10.11.21 + 105) / 105 
= (2.5.11.21 + 105) / 105 
= (2.11.105 + 105) / 105 
= 22 + 1 = 23 

18 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)

Áp dụng BĐT Bunhiacopxki ta có:

\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)

\(\Leftrightarrow A\ge3\)

Dấu " = " xảy ra <=> \(x=y=z=1\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

20 tháng 4 2019

Từ chỗ x + y + z >= 3 còn có cách khác rất quen thuộc ạ!

Ta có: \(A=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\)

\(\ge2\left(x+y+z\right)-3\ge6-3=3\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

31 tháng 10 2016

Theo bất đẳng thức Cauchy - Schwarz:
(x² + y² + z²)(1 + 1 + 1)
= (x² + y² + z²)(1² + 1² + 1²) ≥ (x + y + z)²
<--> (x² + y² + z²)(1² + 1² + 1²) ≥ 3² = 9
<--> 3(x² + y² + z²) ≥ 9
<--> x² + y² + z² ≥ 3
--> M ≥ 3
--> min M = 3 khi x = y = z = 1

31 tháng 10 2016

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²

cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1

29 tháng 7 2020

Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)

\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)

Đẳng thức xảy ra khi x = y = z = 1

27 tháng 4 2018

Áp dụng BĐT :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9

Trong đó : a = xy ; b = yz ; c = xz

⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )

Áp dụng BĐT cô - si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )

y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)

z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)

Từ ( * ; **)

⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9

⇒ 3A ≥ 9

⇒ A ≥ 3

⇒ AMIN = 3 ⇔ x = y = z

27 tháng 4 2018

thanks nha

25 tháng 1 2016

mình cũng bó tay  

25 tháng 1 2016

bạn giải dùm mink đi rồi mình tick cho