Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có:
\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)
\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)
\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)
Ta lại có:
\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)
\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)
Theo đề bài ta có: (sửa đề luôn)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Áp dụng BĐ Svac-xơ, ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)
^_^
\(x+\frac{1}{x}=y+\frac{1}{y}\Rightarrow\frac{x^2+1}{x}=\frac{y^2+1}{y}\Rightarrow\frac{x}{x^2+1}=\frac{y}{y^2+1}=\frac{x+y}{x^2+y^2+2}\)
\(\Rightarrow\frac{x}{x^2+1}+\frac{y}{y^2+1}=\frac{2\left(x+y\right)}{x^2+y^2+2}\)