K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\forall x\)

* Nếu x = 1 thì \(5.f\left(9\right)=0\Rightarrow f\left(9\right)=0\)

Tại x = 9 thì f(x) = 0 nên 9 là 1 nghiệm của f(x)

* Nếu x = -4 thì \(-5.f\left(-4\right)=0\Rightarrow f\left(-4\right)=0\)

Tại x = -4 thì f(x) = 0 nên -4 là 1 nghiệm của f(x)

10 tháng 6 2020

bài này có 2 nghiêm là ít nhất

12 tháng 5 2016

Thay x=1 ta được

(1-1).f(1)=(1+4).f(1+8)

<=>5.f(9)=0

<=>f(9)=0

suy ra 9 là nghiệm của f(x)

Thay x=-4 ta được:

(-4-1).f(-4)=(-4+4).F(-4+8)

<=>-5.f(-4)=0

<=>f(-4)=0

suy ra -4 là nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

20 tháng 2 2016

 Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

3 tháng 3 2017

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
Suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
Suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

19 tháng 4 2018

ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)

=>(*) đúng với giá trị x=1

Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)

=> 0.f(1)=5.f(9) =>f(9)=0

=> x=9 là 1 nghiệm của f(x)

Thay f(9)=0 vào (*) ta được 

(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)

=>8.0=13.f(17) => 0=13.f(17)

=> f(17)=0

=>17 là 1 nghiệm của f(x)

vậy có ít nhất 1 nghiệm là số nguyên tố

tk mk nha bn 

*****Chúc bạn học giỏi*****


{2008a+3b+12018a+2018a+b⇒{2008a+3b+12018a+2018a+b là hai số lẻ

Nếu a02008a+2018aa≠0⇒2008a+2018a là số chẵn

Để 2008a+2008a+b2008a+2008a+b lẻ b⇒b lẻ

Nếu bb lẻ 3b+1⇒3b+1 chẵn

Do đó 2008a+3b+12008a+3b+1 chẵn (không thỏa mãn)

a=0⇒a=0

Với a=0(3b+1)(b+1)=225a=0⇒(3b+1)(b+1)=225

Vì bN(3b+1)(b+1)=3.75=5.45=9.25b∈N⇒(3b+1)(b+1)=3.75=5.45=9.25

Do 3b+13b+1 /⋮̸ 33 và 3b+1>b+13b+1>b+1

{3b+1=25b+1=9⇒{3b+1=25b+1=9b=8⇒b=8

Vậy: {a=0b=8{a=0b=8

 
 
 
 
 

1.A)

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 
Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9