K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

25 tháng 3 2018

Chọn A

Cách 1: Khối tứ diện ABCD được chia thành bốn tứ diện có thể tích bằng nhau.

Cách 2:

Mà M, N, P là trung điểm các cạnh BC, CD, BD nên hai tam giác BCD và MNP đồng dạng theo tỉ số

20 tháng 6 2019

27 tháng 6 2018

3 tháng 10 2018

4 tháng 8 2019

Đáp án là D

Trong mặt phẳng (ABD) qua P kẻ đường thẳng song song AB cắt AD tại Q ta có 

Dễ thấy MN là đường trung bình tam giác ABC nên MN//AB//PQ,nên 4 điểm M,N,P,Q đồng phẳng và MN=3a, thiết diện cần tim chính là hinh thang MNPQ, do tất cả các cạnh cạnh của tứ diện  bằng 6a nên tam giác BNP = tam giác AMQ => NP = MQ  vậy MNPQ  là hình thang cân, ta có 

Kẻ đường cao QI có  

5 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có MPNQ là hình bình hành vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (1) và (2) ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh

4 tháng 6 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (3) và (4) ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh.

10 tháng 6 2018