\(\widehat{A}+\widehat{C}=180\) . chứng  minh :
a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân

19 tháng 9 2020

a,   Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)

Mat khac do AB=BC nen tam giac ABC can suy ra    \(\widehat{CAB}=\widehat{ACB}\)

  Tu day ta co  \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua    \(\widehat{ADC}\)

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

2 tháng 9 2020

a) FN là đường trung bình của tam giác ADC 

\(\Rightarrow FN=\frac{AD}{2}\)

EM là đường trung bình của tam giác ADB 

\(\Rightarrow EM=\frac{AD}{2}\)

NE là đường trung bình của tam giác ABC

\(\Rightarrow EN=\frac{CB}{2}\)

FM là đường trung bình của tam giác BDC

\(\Rightarrow FM=\frac{CB}{2}\)

Mà AD = BC (gt) 

\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)

\(\Rightarrow FN=EM=EN=FM\)

=> Tứ giác FNEM là hình thoi 

b)  FM là đường trung bình của tam giác BDC

\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)

FN là đường trung bình của tam giác ADC

\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)

Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)

\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)

6 tháng 11 2018

Do P là trung điểm của BC nên :

=) CP=BP=\(\frac{BC}{2}\)

Do Q là trung điểm của AD nên:

=) AQ=QD=\(\frac{A\text{D}}{2}\)

Mà AD=BC (Tính chất hình bình hành)

=) BP=AQ=PC=QD (1)

Mà 2 cạch AP và BP lại song song với nhau (2)

TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành

6 tháng 11 2018

b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB

Mà AQ=BP (Tính chất hình bình hành)

Và AB=PQ (Tính chất hình bình hành)

=) AB=BP=PQ=AQ

=) Tứ giác ABPQ là hình thoi

=) 2 đường chéo AP và BQ vuông góc với nhau

Hay AP \(\perp\)BQ

c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)\(60^0\)

Xét tam giác BPQ có :

QP=PB (chứng minh trên )

\(\widehat{P}\)=  \(60^0\)

=) Tam giác BPQ là tam giác đều

=) \(\widehat{B}\) =\(60^0\) (1)

Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)

Và QP lại song song với BC =) BQDC là hình thang (3)

Tu (1) ;(2) va (3) =) BQDC là hình thang cân