Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F M N
Gọi N là trung điểm của BD.
Xét \(\Delta\)ABC có: E là trung điểm AB; F là trung điểm BC => EF là đương trung bình trong \(\Delta\)ABC
=> EF // AC. Mà AC vuông góc BD. Nên EF vuông góc BD hay ND vuông góc EF (1)
Ta thấy: FN là đường trung bình \(\Delta\)BCD => FN // CD
Do EM vuông góc CD nên EM vuông góc FN. Tương tự, ta có: FM vuông góc EN
Xét \(\Delta\)ENF có: EM vuông góc FN; FM vuông góc EN => M là trực tâm \(\Delta\)ENF
=> NM vuông góc EF (2)
Từ (1) và (2) => 3 điểm D;N;M thẳng hàng. Lại có N là trung điểm BD => B;M;D thẳng hàng (đpcm).
cách 2, câu b/
Gọi giao của AC và BD là I, chứng minh được DI= CI
mà ED =CF
=> IE= IF
mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD
cách 1, câu b/
Gọi N là giao EF và BC
dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng
>>> đpcm
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV