Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì a/b= c/d nên ta có a/b=c/d=k suy ra a=kb ; c=kd ta co :a/a-b=kb/kb-b =kb/b.(k-1)=k/k-1 (1) ta có:c/c-d=kd/kd-d=kd/d.(k-1)=k/k-1 (2) Từ (1) và (2) suy ra a/a-b=c/c-d b) ta có:a+b/b=kb+b/b=b.(k+1) /b=k+1 (1) c+d/d=kd+d/d=d+(k+1)/d=k+1 (2) từ (1) và (2) suy ra a+b/b=c+d/d
TA CÓ A/B=C/D
=A/C=B/D=A-C/B-D=A+C/B+D
=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA
AA/B=C/D
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
b/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
c/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\Rightarrow\frac{a+b}{a}=\frac{c+d}{c}.\)
d/ Từ câu c có \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)
ta suy ra \(a,b,c,d\ne0\) và \(\frac{a}{b}=\frac{c}{d}\left(1\right)\).
Cộng vào hai vế của (1) cùng số 1 ta được:
\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)
b) Giải tương tự câu a) ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)
Hoặc ta có theo tính chất của tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
Ta có :
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Rightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)\(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau vào \(\left(1\right)\) ta có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{a+a}{c+c}=\frac{2a}{2c}=\frac{a}{c}\)\(\left(2\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau vào \(\left(1\right)\) ta có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{b+b}{d+d}=\frac{2b}{2d}=\frac{b}{d}\)\(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\)suy ra \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)
Vậy từ tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)khác \(1\)ta có tỉ lện thức \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)