Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
O A B C D E F H K P Q x y S T
a, Xét tứ giác BFEC có ^BFC = ^BEC = 90o
=> Tứ giác BFEC nội tiếp
Xét tứ giác CEHD có ^CEH = ^CDH = 90o
=> tứ giác CEHD nội tiếp
b, Tứ giác BFEC nội tiếp => ^AFE = ^ACB
Mà ^ACB = ^BAx (góc tạo bởi tia tiếp tuyến và dây cung)
=> ^AFE = ^BAx
=> xy // EF (so le trong)
Mà OA _|_ xy (tiếp tuyến)
=> OA _|_ EF
hay OA _|_ PQ
*Vì AQCB nội tiếp
=> ^AQC + ^ABC = 180o (1)
Và ^AEF = ^ABC (2)
Lại có ^AEF + ^AEQ = 180o (3)
Từ (1) ; (2) và (3) => ^AEQ = ^AQC
Còn câu c mình chưa nghĩ ra , có lẽ là chứng minh tứ giác CEPT nội tiếp ...