K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABK nội tiếp đường tròn

AK là đường kính

Do đó: ΔABK vuông tại B

Xét (O) có

ΔACK nội tiếp đường tròn

AK là đường kính

Do đó: ΔACK vuông tại C

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

1 tháng 7 2021

a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp

Gọi I là trung điểm BC

Vì \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)

Vì \(\Delta BDC\) vuông tại D có I là trung điểm BC \(\Rightarrow ID=IB=IC\)

\(\Rightarrow ID=IE=IB=IC\Rightarrow I\) là tâm của (BCDE)

b) Vì AK là đường kính \(\Rightarrow\angle ABK=\angle ACK=90\)

\(\Rightarrow\left\{{}\begin{matrix}BK\bot AB\\CK\bot AC\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}CH\bot AB\\BH\bot AC\end{matrix}\right.\Rightarrow\) \(CH\parallel BK,BH\parallel CK\)

\(\Rightarrow BHCK\) là hình bình hành có I là trung điểm BC

\(\Rightarrow H,I,K\) thẳng hàng

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

24 tháng 10 2022

a: Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK vuông góc với AB

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>AC vuông góc với CK

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Vì BHCK là hình bình hành

nên BC cắt HK tại trung điểm của mỗi đường

=>M là trung điểm của HK

Xét ΔKAH có

KO/KA=KM/KH

nên OM//AH và OM/AH=KO/KA=1/2

=>OM=1/2AH

15 tháng 4 2020

Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H

a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.

b/ Chứng minh : OM // AH

c/ Chứng minh : AB.AE = AC.AD

d/ Gọi K là điểm đối xứng của H qua M .

27 tháng 3 2018

a, BH ^ AC và CM ^ AC Þ BH//CM

Tương tự => CH//BM

=> BHCM là hình bình hành

b, Chứng minh BNHC là hình bình hành

=> NH//BC

=> AH ^ NH =>  A H M ^ = 90 0

Mà  A B N ^ = 90 0 => Tứ giác AHBN nội tiếp

c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng

d,  A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN

AN = AM = 2R, AB = R 3 =>  A m B ⏜ = 120 0

S A O B = 1 2 S A B M = R 2 3 4

S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3

=> S cần tìm =  2 S A m B ⏜ = R 2 6 4 π - 3 3

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)