K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tử kẻ hình nhé .

a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)

\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)

b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)

5 tháng 10 2017

A B C E D

a) Ta có: \(cosA=\dfrac{AD}{AB};cosA=\dfrac{AE}{AC}\)

Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Vậy \(\Delta ADE\sim\Delta ABC\left(c-g-c\right)\) do đó

\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)

Suy ra: \(S_{ADE}=S_{ABC}.cos^2A\)

b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2A\)

\(=S_{ABC}\left(1-cos^2A\right)=S_{ABC}sin^2A\)

25 tháng 8 2019

a, \(\bigtriangleup{ABD} \sim \bigtriangleup{ACE}\) (g.g)

\(\Rightarrow\) \(\dfrac{AB}{AC} = \dfrac{AD}{AE}\) \(\Rightarrow\) \(\dfrac{AB}{AD} = \dfrac{AC}{AE}\)

\(\Rightarrow\) \(S_{ABC} \sim S_{ADE}\) (c.g.c)

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}} = k^2 = ({\dfrac{AD}{AB}})^2\) = \(cos^2A\)

\(\Rightarrow\) \(S_{ADE} = S_{ABC} . cos^2A\) (đpcm)

b, \(S_{BCDE} = S_{ABC} - S_{ADE}\)

\(= S_{ABC} - S_{ABC} . cos^2A \)

= \(S_{ABC} (1-cos^2A)\)

= \(S_{BCDE} = S_{ABC} . sin^2A \) (đpcm)

Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDClà tứ giác nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng với ΔACB

Suy ra: \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)

hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc BAD chung

DO đó ΔADB đồng dạng với ΔAEC

Suy ra: AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)

hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)

14 tháng 6 2019

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

14 tháng 6 2019

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ) 

6 tháng 7 2016

a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)

Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)

Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)

b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\)\(S_{CEF}=S_{ABC}.cos^2C\)

Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)

Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)

Chúc em học tốt :)))

6 tháng 7 2016

minh k bit

Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng với ΔACB

=>\(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{AD}{AC}\right)^2=cos^2A\)

hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)

15 tháng 8 2017

a)

\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)

\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)

\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)

Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)

Cộng theo vế của (1) , (2) và (3) => đpcm

b)

\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)

\(=1-\cos^2A-\cos^2B-\cos^2C\)

\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)

7 tháng 8 2018

A B C H I K

a)

Ta có:

Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)

\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)

b)

\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)

\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)

\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)