K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

a, H là trực tâm của \(\Delta ABC\left(gt\right)\Rightarrow BH\perp AC,CH\perp AB\)

Mà \(CK\perp AC,BK\perp AB\left(gt\right)\)

\(\Rightarrow BH//CK,CH//BK\)

\(\Rightarrow BHCK\)là hình bình hành.

b, Hình bình hành BHCK có 2 đường chéo BC,HK cắt nhau tại O

\(\Rightarrow O\)là trung điểm của HK.

ON là đường trung bình của \(\Delta AHK\Rightarrow ON=\frac{1}{2}AH\Rightarrow AH=2ON\)

c, Tứ giác ABCK có: \(\widehat{BAC}+\widehat{ABK}+\widehat{ACK}+\widehat{BKC}=360^0\)

                          \(\Rightarrow60^0+90^0+90^0+\widehat{BKC}=360^0\Rightarrow\widehat{BKC}=150^0\)

BH//CK(gt) \(\Rightarrow\widehat{BKC}+\widehat{HCK}=180^0\)

                \(\Rightarrow150^0+\widehat{HCK}=180^0\Rightarrow\widehat{HCK}=30^0\)

BHCK là hình bình hành (cmt) nên \(\hept{\begin{cases}\widehat{BHC}=\widehat{BKC}=150^0\\\widehat{HBK}=\widehat{HCK}=30^0\end{cases}}\) (tính chất hbh)

13 tháng 12 2017

Hình bạn tự vẽ nha!

a,  ta có:

Góc A=Góc D=90°(gt)<=>AD_|_DC

BH_|_DC

=>BH//AD

ABCD là hình thang nên AB//CD

=>Tứ giác ABHD là hình chữ nhật.

b,Do ABHD  là hình chữ nhật, nên:

AB=HD=3cm

CD=6cm=>HC=6-3=3 cm

Do BH_|_CD(gt)=>góc BHC=90°

=>tam giác BHC vuông tại H

Xét tam giác vuông BHC:

Theo định lý pitago trong tam giác vuông thì:

BC^2=HC^2+BH^2

=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16

=>BH=4 cm

=>Diện tích hình chữ nhật ABHD là:

3.4=12 cm2

c,Do M là M là trung điểm của BC nên:

MB=MC=BC/2=5/2=2,5cm

Do N đối xứng với M qua E (gt)nên:

EM=EN

Đường chéo AH^2=AD^2+DH^2=25cm

=>AH=5cm=>EH=5/2=2,5cm

=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm

EM+EN=2AB=6 cm

AB//HC=3cm;BC//AH=5cm

=>NM//DC=6cm

==> Tứ giác NMCD  là hình bình hành

d,bạn tự chứng minh (khoai quá)

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)

28 tháng 9 2018

a)Ta có :BH song song với DC (cùng vuông góc với AC).

HC song song DB (cùng vuông góc với AB).

=>  BDHC là hình bình hành.

b)Vì M là giao điểm của 2 đường chéo của hình bình hành BDHC.

=>M là trung điểm của HC.

mà N là trung điểm của AD.

=>MN là đường trung bình của tam giác AHD.

=>MN song song với AH mà AH vuông góc với BC.

=>MN vuông góc với BC.

MN là đường trung bình của tam giác AHC.

=>MN=1/2 HA.

hay AH = 2MN.

21 tháng 10 2021

thks

15 tháng 1 2019

điểm M để làm gì vậy

15 tháng 1 2019

câu a thì dễ mà caaub vẽ thế nào cx ko là giao ba đường đấy

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

14 tháng 8 2018

dễ ẹc!!!!!!!!

14 tháng 8 2018

làm hộ tui với