K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Hiện tại lm đc câu a, câu b tí nx làm

Mk sẽ ko tính theo a,b,c mà tính theo AB,AC,BC

Kẻ đg cao CH\(\Rightarrow\cos A=\frac{AH}{AC}\)

Xét \(VP=AH^2+HC^2+\left(AH+HB\right)^2-2AB.AC.\frac{AH}{AC}\)

\(=AH^2+HC^2+AH^2+HB^2+2AH.HB-2AB.AH\)

\(=2AH^2+BC^2-2AH\left(AB-HB\right)=2AH^2+BC^2-2AH.AH=2AH^2+BC^2-2AH^2=BC^2=VT\)

30 tháng 6 2019

Cái kia phải là \(\tan\frac{\widehat{ABC}}{2}\) ms đúng

Kẻ phân giác BM

\(\tan\widehat{\frac{ABC}{2}}=\tan\widehat{ABM}=\frac{AM}{AB}\)

Có BD là p/g\(\Rightarrow\frac{AM}{AB}=\frac{MC}{BC}\Leftrightarrow AB=\frac{AM.BC}{MC}\)

Xét \(VT=\frac{AC}{AB+BC}=\frac{AC}{\frac{AM.BC}{MC}+BC}=\frac{AC}{\frac{BC\left(AM+MC\right)}{MC}}=\frac{AC.MC}{BC.AC}=\frac{MC}{BC}\)

\(\frac{MC}{BC}=\frac{AM}{AB}=\tan\widehat{ABM}\)

\(\Leftrightarrow\frac{AC}{AB+BC}=\tan\widehat{ABM}=\tan\frac{\widehat{ABC}}{2}\)

27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Kẻ \(BH\perp AC\)

Theo công thức lượng giác:

\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)

\(\Rightarrow CH=AC-AH=b-c\cos A\)

Do đó áp dụng định lý Pitago:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)

\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)

\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)

\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)

Ta có đpcm.

13 tháng 7 2017

hehe cho xl em mk hk lop 6

13 tháng 7 2017

tam giác vuông ở đâu z ???

19 tháng 10 2020

Cái này là công thức hàm số cos nha 

Hàm số cos theo em tới lớp 11 12 luôn nha ( bài tập vật lí 11 12 ) 

Lên lớp 10 sẽ học 

Còn chứng minh quên rồi 

19 tháng 10 2020

Cái này được suy ra từ định lí hàm số cos:

trong \(\Delta ABC\)thì \(b^2=a^2+c^2-2ac.\cos B\)

Với \(\Delta ABC\)có góc \(B\)tù thì   \(\cos B=-\cos\left(180-\widehat{B}\right)\)

nên khi đó ta có thể viết lại:

 \(b^2=a^2+c^2-2ac\left[-\cos\left(180-\widehat{B}\right)\right]\)\(\Rightarrow b^2=a^2+c^2+2ac.\cos\left(180^o-\widehat{B}\right)\)