Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giac vuong MHN và MPN, ta có:
\(\widehat{HMN}=\widehat{MPN}\) (cùng phụ với góc HMP)
=> \(\Delta HMN\sim\Delta MPN\left(g.g\right)\)
b) Áp dụng định lí pitago ta tính dc NP = 20 (cm)
Áp dụng tính chất đường phân giác trong tam giác MNP ta có:
\(\dfrac{DN}{DP}=\dfrac{MN}{MP}=\dfrac{12}{16}=\dfrac{3}{4}\) <=> \(\dfrac{DN}{3}=\dfrac{DP}{4}=\dfrac{DN+DP}{3+4}=\dfrac{20}{7}\)
=> DN = 60/7 (cm) và DP = 20/7 (cm)
a) Xét tam giác HMN và tam giác MNP:
Góc B chung.
Góc MHN = Góc NMP (cùng = 90o).
=> Tam giác HMN \(\sim\) Tam giác MNP (g - g).
b) Xét tam giác MNP vuông tại M, MH là đường cao:
=> MH2 = NH . PH (Hệ thức lượng trong tam giác vuông).
c) Xét tam giác NFH và tam giác MEH:
Góc FNH = Góc EMH (cùng phụ với góc MPN).
Góc NHF = Góc MHE (cùng phụ với góc MHF).
=> Tam giác NFH \(\sim\) Tam giác MEH (g - g).
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH^2=NH\cdot PH\)
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: ΔMNP vuông tại M co MH vuông góc NP
nên MH^2=HN*HP
a) Xét ΔHNM và ΔMNP ta có:
\(\widehat{N}\) chung
\(\widehat{NMP}=\widehat{NHM}=90^0\)
⇒ΔHNM ∼ ΔMNP(g-g)
b) Xét ΔHMP và ΔMNP ta có:
\(\widehat{P}\) chung
\(\widehat{NMP}=\widehat{NHP}=90^0\)
→ΔHMP ∼ ΔMNP(g-g)
\(\rightarrow\dfrac{MP}{HP}=\dfrac{NP}{MP}\\ \rightarrow MP.MP=HP.NP\\ \Rightarrow MP^2=HP.NP\)
∆PHM vuông tại H
⇒ ∠PMH + ∠P = 90⁰ (1)
∆MNP vuông tại M
⇒ ∠MNP + ∠P = 90⁰
⇒ ∠MNH + ∠P = 90⁰ (2)
Từ (1) và (2) ⇒ ∠MNH = ∠PMH
Xét ∆MHN và ∆PHM có:
∠MHN = ∠MHP = 90⁰
∠MNH = ∠PMH (cmt)
⇒ ∆MHN ∼ ∆PHM (g-g)