K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

3 tháng 9 2023

a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.

b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.

c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

27 tháng 11 2023

a: NP=NH+HP

=1+4

=5(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=HN\cdot HP\)

=>\(MH^2=1\cdot4=4\)

=>MH=2(cm)

ΔMHP vuông tại H

=>\(HM^2+HP^2=MP^2\)

=>\(MP^2=2^2+4^2=20\)

=>\(MP=2\sqrt{5}\left(cm\right)\)

b:

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)

=>\(MN^2=25-20=5\)

=>\(MN=\sqrt{5}\left(cm\right)\)

Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)

=>\(cosN=\dfrac{\sqrt{5}}{5}\)

Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)

=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

c: Xét ΔMNA vuông tại M có MK là đường cao

nên \(NK\cdot NA=NM^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=NM^2\left(2\right)\)

Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)

=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

Xét ΔNKP và ΔNHA có

\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

\(\widehat{KNP}\) chung

Do đó: ΔNKP đồng dạng với ΔNHA

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt