Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNK và ΔMEK có
MN=ME
góc NMK=góc EMK
MK chung
=>ΔMNK=ΔMEK
b,c: Xét ΔKNF và ΔKEP có
KN=KE
góc KNF=góc KEP
NF=EP
=>ΔKNF=ΔKEP
=>KF=KP
d: ΔKNF=ΔKEP
=>góc NKF=góc EKP
=>góc EKP+góc PKF=180 độ
=>F,K,E thẳng hàng
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)
a: PN=10cm
b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có
PK chung
\(\widehat{MPK}=\widehat{EPK}\)
Do đó: ΔPMK=ΔPEK
c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có
KM=KE
\(\widehat{MKD}=\widehat{EKN}\)
DO đó: ΔMKD=ΔEKN
Suy ra: KD=KN
d: Ta có: PM+MD=PD
PE+EN=PN
mà PM=PE
và MD=EN
nên PD=PN
hayΔPDN cân tại P
a)xét tam giác(tg) mne và tg mpd có
mn=mp(gt)
me=md(_)
m góc chung
=>tg mne = tg mpd
b)có md+dn+180(2 góc kề bù)
me+ep=180(_________)
mà md=me=>dn=ep
vì tg mne= tg mpd(cma)=>dnk=kpe(2 góc t/ư)
và men=ndp(2 góc t/ư)mà men+pen=mdp+ndp=180(kề bù) và men=ndp=>pen=mdp
xét tg dkn và tg ekp có
ndk=kpe(cmt)
dn=ep(cmt)
pen=mdp(cmt)
=>tgdkn=tg ekp
a) Xét MNE và MPD:
MN=MP(giả thiết)
góc NMP chung
ME=MD(giả thiết)
=> tam giác MNE=MPD(c.g.c)
b) Do tam giác MNE=MPD=> góc MNE= MPD và góc MEN=MDP (1)
=> góc NDP=NEP (cùng bù với 2 góc bằng nhau)
do MN=MP và MD=ME => ND=EP (2)
từ (1) và (2) => tam giác DKN=EKP (g.c.g)